Evaluation of Fresh Properties of Cement Pastes: Part II-Modelling via Central Composite Design
Downloads
This study investigates how variations in constituent materials affect the fresh properties of cement-based pastes using a statistically driven experimental approach. A Central Composite Design (CCD) was implemented to examine the influence of three key input parameters: water-to-cement ratio (w/c), superplasticizer-to-powder ratio (Sp/p), and water-to-powder ratio (w/p). Fifteen mix compositions were produced and tested using the mini-slump test and Marsh funnel flow time, both immediately after mixing and after 60 minutes. Response Surface Methodology (RSM) was applied to develop predictive models for each property. The results showed that the water-to-powder ratio was the most influential factor on workability, followed by the superplasticizer-to-powder ratio. The statistical models successfully captured main, interaction, and quadratic effects, enabling accurate prediction of flow and time measurements. These models were further used to optimize mix compositions according to targeted fresh-state performance. Compared with conventional one-variable-at-a-time approaches, the CCD method substantially reduces the number of tests required while providing deeper analytical insights. The proposed methodology improves the understanding of complex interactions among mix parameters and supports the efficient design of cement-based materials for performance-critical applications.
Downloads
[1] Okamura, H., & Ouchi, M. (2003). Self-compacting concrete. Journal of Advanced Concrete Technology, 1(1), 5-15. doi:.10.3151/jact.1.5
[2] Khayat, K. H. (1999). Workability, testing, and performance of self-consolidating concrete. Materials Journal, 96(3), 346-353. doi:10.14359/632.
[3] Richard, P., & Cheyrezy, M. (1995). Composition of reactive powder concretes. Cement and Concrete Research, 25(7), 1501–1511. doi:10.1016/0008-8846(95)00144-2.
[4] Mehta, P. K., & Monteiro, P. J. (2006). Concrete microstructure, properties, and materials. McGraw-Hill, New York, United States.
[5] Domone, P. (1998). The slump flow test for high-workability concrete. Cement and Concrete Research, 28(2), 177–182. doi:10.1016/S0008-8846(97)00224-X.
[6] Roussel, N., & Le Roy, R. (2005). The Marsh cone: A test or a rheological apparatus? Cement and Concrete Research, 35(5), 823–830. doi:10.1016/j.cemconres.2004.08.019.
[7] Roussel, N., Stefani, C., & Leroy, R. (2005). From mini-cone test to Abrams cone test: Measurement of cement-based materials yield stress using slump tests. Cement and Concrete Research, 35(5), 817–822. doi:10.1016/j.cemconres.2004.07.032.
[8] Roussel, N., & Coussot, P. (2005). “Fifty-cent rheometer” for yield stress measurements: From slump to spreading flow. Journal of Rheology, 49(3), 705–718. doi:10.1122/1.1879041.
[9] Saak, A. W., Jennings, H. M., & Shah, S. P. (2001). The influence of wall slip on yield stress and viscoelastic measurements of cement paste. Cement and Concrete Research, 31(2), 205–212. doi:10.1016/S0008-8846(00)00440-3.
[10] Wallevik, J. E. (2006). Relationship between the Bingham parameters and slump. Cement and Concrete Research, 36(7), 1214–1221. doi:10.1016/j.cemconres.2006.03.001.
[11] Wallevik, O. H., Feys, D., Wallevik, J. E., & Khayat, K. H. (2015). Avoiding inaccurate interpretations of rheological measurements for cement-based materials. Cement and Concrete Research, 78, 100–109. doi:10.1016/j.cemconres.2015.05.003.
[12] Guria, C., Kumar, R., & Mishra, P. (2013). Rheological analysis of drilling fluid using Marsh Funnel. Journal of Petroleum Science and Engineering, 105, 62–69. doi:10.1016/j.petrol.2013.03.027.
[13] Ghezal, A., & Khayat, K. H. (2002). Optimizing self-consolidating concrete with limestone filler by using statistical factorial design methods. Materials Journal, 99(3), 264-272. doi:10.14359/11972.
[14] Rezaifar, O., Hasanzadeh, M., & Gholhaki, M. (2016). Concrete made with hybrid blends of crumb rubber and metakaolin: Optimization using Response Surface Method. Construction and Building Materials, 123, 59–68. doi:10.1016/j.conbuildmat.2016.06.047.
[15] Aziminezhad, M., Mohamedelhassan, E., & Mahdikhani, M. (2024). Multi-property response and optimisation of lightweight self-consolidating mortar containing silica fume and nano silica. European Journal of Environmental and Civil Engineering, 28(5), 1163-1182. doi:10.1080/19648189.2023.2245863.
[16] Box, G. E. P., & Wilson, K. B. (1951). On the Experimental Attainment of Optimum Conditions. Journal of the Royal Statistical Society Series B: Statistical Methodology, 13(1), 1–38. doi:10.1111/j.2517-6161.1951.tb00067.x.
[17] Montgomery, D. C. (2017). Design and analysis of experiments. John Wiley & Sons, Hoboken, United States.
[18] Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons, Hoboken, United States.
[19] Fan, D., Lu, J. X., Liu, K., Ban, J., Yu, R., & Poon, C. S. (2024). Multi-scale design of ultra-high performance concrete (UHPC) composites with centroplasm theory. Composites Part B: Engineering, 281, 111562. doi:10.1016/j.compositesb.2024.111562.
[20] Hou, D., Zhang, X., Zhang, K., Zhang, X., Bao, M., Jin, L., ... & Wang, X. (2025). Optimizing lightweight UHPC through the synergy of lightweight aggregate, filler, and polymer fiber via response surface methodology. Construction and Building Materials, 463, 140104. doi:10.1016/j.conbuildmat.2025.140104.
[21] Hayek, M., El Bitouri, Y., Bouarab, K., & Yahia, A. (2025). Structural Build-Up of Cement Pastes: A Comprehensive Overview and Key Research Directions. Construction Materials, 5(2), 31. doi:10.3390/constrmater5020031.
[22] Rojo-López, G., Nunes, S., González-Fonteboa, B., & Martínez-Abella, F. (2020). Quaternary blends of portland cement, metakaolin, biomass ash and granite powder for production of self-compacting concrete. Journal of Cleaner Production, 266, 121666. doi:10.1016/j.jclepro.2020.121666.
[23] Hu, C. (1995). Rheology of fluid concretes. Ph.D. Thesis, Ecole Nationale des Ponts et Chaussées, Champs-sur-Marne, France.
[24] Juvas, K., Kappi, A., Salo, K., & Nordenswan, E. (2001). The effects of cement variations on concrete workability. Nordic Concrete Research-Publications, 26, 39–46.
[25] Nunes, S., Figueiras, H., Milheiro Oliveira, P., Coutinho, J. S., & Figueiras, J. (2006). A methodology to assess robustness of SCC mixtures. Cement and Concrete Research, 36(12), 2115–2122. doi:10.1016/j.cemconres.2006.10.003.
[26] Nunes, S., Oliveira, P. M., Coutinho, J. S., & Figueiras, J. (2009). Interaction diagrams to assess SCC mortars for different cement types. Construction and Building Materials, 23(3), 1401–1412. doi:10.1016/j.conbuildmat.2008.07.009.
[27] Xu, K., Yang, J., He, H., Wei, J., & Zhu, Y. (2025). Influences of Additives on the Rheological Properties of Cement Composites: A Review of Material Impacts. Materials, 18(8), 1753. doi:10.3390/ma18081753.
[28] Matos, A. M., Maia, L., Nunes, S., & Milheiro-Oliveira, P. (2018). Design of self-compacting high-performance concrete: Study of mortar phase. Construction and Building Materials, 167, 617–630. doi:10.1016/j.conbuildmat.2018.02.053.
[29] Maia, L., & Neves, D. (2017). Developing a Commercial Self-Compacting Concrete without Limestone Filler and With Volcanic Aggregate Materials. Procedia Structural Integrity, 5, 147–154. doi:10.1016/j.prostr.2017.07.085.
[30] Uysal, M., & Tanyildizi, H. (2011). Predicting the core compressive strength of self-compacting concrete (SCC) mixtures with mineral additives using artificial neural network. Construction and Building Materials, 25(11), 4105–4111. doi:10.1016/j.conbuildmat.2010.11.108.
[31] Richards, J. A., Li, H., O’Neill, R. E., Laidlaw, F. H. J., & Royer, J. R. (2024). Fresh cement as a frictional non-Brownian suspension. Powder Technology, 441, 119791. doi:10.1016/j.powtec.2024.119791.
[32] Yan, K., & Shi, C. (2010). Prediction of elastic modulus of normal and high strength concrete by support vector machine. Construction and Building Materials, 24(8), 1479–1485. doi:10.1016/j.conbuildmat.2010.01.006.
[33] Kabiru, O. A., Owolabi, T. O., Ssennoga, T., & Olatunji, S. O. (2014). Performance comparison of SVM and ANN in predicting compressive strength of concrete. IOSR Journal of Computer Engineering, 16(5), 88–94.
[34] Azimi-Pour, M., Eskandari-Naddaf, H., & Pakzad, A. (2020). Linear and non-linear SVM prediction for fresh properties and compressive strength of high volume fly ash self-compacting concrete. Construction and Building Materials, 230, 117021. doi:10.1016/j.conbuildmat.2019.117021.
[35] Abd, A. M., & Abd, S. M. (2017). Modelling the strength of lightweight foamed concrete using support vector machine (SVM). Case Studies in Construction Materials, 6, 8–15. doi:10.1016/j.cscm.2016.11.002.
[36] Pinheiro, C., Rios, S., Viana da Fonseca, A., Fernández-Jiménez, A., & Cristelo, N. (2020). Application of the response surface method to optimize alkali activated cements based on low-reactivity ladle furnace slag. Construction and Building Materials, 264, 120271. doi:10.1016/j.conbuildmat.2020.120271.
[37] Khuri, A. I., & Mukhopadhyay, S. (2010). Response surface methodology. WIREs Computational Statistics, 2(2), 128–149. doi:10.1002/wics.73.
[38] Myers, R. H., Khuri, A. I., Carter, W. H., & Khuri, A. I. (1989). Response Surface Methodology: 1966-1988. Technometrics, 31(2), 137. doi:10.2307/1268813.
[39] Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965–977. doi:10.1016/j.talanta.2008.05.019.
[40] Lamidi, S., Olaleye, N., Bankole, Y., Obalola, A., Aribike, E., & Adigun, I. (2022). Applications of response surface methodology (RSM) in product design, development, and process optimization. IntechOpen, London, United Kingdom. doi:10.5772/intechopen.106763.
[41] Ali, M., Kumar, A., Yvaz, A., & Salah, B. (2023). Central composite design application in the optimization of the effect of pumice stone on lightweight concrete properties using RSM. Case Studies in Construction Materials, 18, e01958. doi:10.1016/j.cscm.2023.e01958.
[42] Box, G. E., Hunter, J. S., & Hunter, W. G. (2005). Statistics for experimenters: design, innovation, and discovery. John Wiley & Sons, Hoboken, United States.
[43] Taguchi, G. (1987). System of experimental design; engineering methods to optimize quality and minimize costs. UNIPUB/Kaus International, New York, United States.
[44] Plackett, R. L., & Burman, J. P. (1946). The Design of Optimum Multifactorial Experiments. Biometrika, 33(4), 305. doi:10.2307/2332195.
[45] Koshal, J., Nedić, A., & Shanbhag, U. V. (2011). Multiuser optimization: Distributed algorithms and error analysis. SIAM Journal on Optimization, 21(3), 1046-1081. doi:10.1137/090770102.
[46] Yu, R., Spiesz, P., & Brouwers, H. J. H. (2014). Effect of nano-silica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount. Construction and Building Materials, 65, 140-150. doi:10.1016/j.conbuildmat.2014.04.063.
[47] Rojo-López, G., Nunes, S., González-Fonteboa, B., & Martínez-Abella, F. (2020). Quaternary blends of portland cement, metakaolin, biomass ash and granite powder for production of self-compacting concrete. Journal of Cleaner Production, 266, 121666. doi:10.1016/j.jclepro.2020.121666.
[48] Sobuz, M. H. R., Aditto, F. S., Datta, S. D., Kabbo, M. K. I., Jabin, J. A., Hasan, N. M. S., ... & Zaman, A. A. U. (2024). High-strength self-compacting concrete production incorporating supplementary cementitious materials: experimental evaluations and machine learning modelling. International Journal of Concrete Structures and Materials, 18(1), 67. doi:10.1186/s40069-024-00707-7.
[49] EN 196:1995. (1995). EN 196-1: Methods of testing cement — Part 1: Determination of strength. European Committee for Standardization (CEN), Brussels, Belgium.
[50] EN 445:2007. (2007). Grout for prestressing tendons - Test methods. European Committee for Standardization (CEN), Brussels, Belgium.
[51] Stat-Ease. (2019). Design-Expert® Software User’s Guide (v7/v13). Stat-Ease, Minneapolis, United States.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















