Probabilistic Reliability Framework for Nanomaterial-Stabilized Soft Clays: Model Calibration and Geometry Effects
Downloads
The stabilization of soft clay soils using nanomaterials offers a promising alternative to conventional additives such as lime and cement, yet most studies remain deterministic, neglecting soil variability and treatment geometry. This study proposes an experimental–probabilistic framework combining triaxial shear and model footing tests with Monte Carlo simulations to evaluate nano-SiO₂, nano-MgO, and nano-clay. Dosages from 1% to 5% were examined, and 3% was selected as optimal based on strength improvement and economic feasibility. Classical bearing capacity models (Terzaghi, Meyerhof, Hansen) were applied and calibrated using regression factors, with input variability modeled under normal and lognormal distributions. Results indicate that nano-MgO achieved the lowest probability of failure ( < 0.1), nano-SiO₂ showed intermediate but geometry-sensitive performance, and nano-clay provided limited reliability. The calibrated Terzaghi model (R² = 0.742) yielded the most consistent predictions. Enlarged treatment zones improved stress redistribution and reduced failure risk. The study also identifies priorities for future work: durability under cyclic loading, hybrid nanomaterial blends (e.g., SiO₂ + MgO), and scalability for large infrastructure projects. Collectively, the findings establish a reliability-based framework that integrates probabilistic modeling, calibration, and material geometry optimization for resilient geotechnical design.
Downloads
[1] Gu, J., Cai, X., Wang, Y., Guo, D., & Zeng, W. (2022). Evaluating the Effect of Nano-SiO2 on Different Types of Soils: A Multi-Scale Study. International Journal of Environmental Research and Public Health, 19(24), 16805. doi:10.3390/ijerph192416805.
[2] Hu, P., Chen, S., Duan, Z., Wang, N., Hao, Y., & Wang, X. (2025). Effect of freeze-thaw cycles on mechanical performance of loess soil stabilized with nano magnesium oxide. PLOS One, 20(4), e0319909. doi:10.1371/journal.pone.0319909.
[3] Arabani, M., Shalchian, M. M., & Majd Rahimabadi, M. (2023). The influence of rice fiber and nanoclay on mechanical properties and mechanisms of clayey soil stabilization. Construction and Building Materials, 407, 133542. doi:10.1016/j.conbuildmat.2023.133542.
[4] Cheraghalikhani, M., Niroumand, H., & Balachowski, L. (2023). Micro- and nano- bentonite to improve the strength of clayey sand as a nano soil-improvement technique. Scientific Reports, 13(1), 10913. doi:10.1038/s41598-023-37936-x.
[5] P. Dukuly, L., Ghani, S., & Kushwaha, S. (2025). Experimental and Numerical Study on Nano-Silica-Stabilized Clayey Subgrades with Geogrid Support. Transportation Infrastructure Geotechnology, 12(5), 156. doi:10.1007/s40515-025-00612-w.
[6] Hassan Al-Riahi, S. M., Irfah Mohd Pauzi, N., Fattah, M. Y., & Ali Abbas, H. (2024). Leaching-induced alterations in the geotechnical and microstructural attributes of clayey gypseous soils. Ain Shams Engineering Journal, 15(7), 102865. doi:10.1016/j.asej.2024.102865.
[7] Pauzi, N.I.M., Aimran, M.A., Ismail, M.S., Radhi, M.S.M. (2020). Optimization of Egg Shell Powder and Lime for Waste Soil Improvement at Open Dumping Area Using Monte Carlo Simulations. Lecture Notes in Civil Engineering, Springer, Cham, Switzerland. doi:10.1007/978-3-030-32816-0_3.
[8] Sharmile, N., Chowdhury, R. R., & Desai, S. (2025). A Comprehensive Review of Quality Control and Reliability Research in Micro–Nano Technology. Technologies, 13(3), 94. doi:10.3390/technologies13030094.
[9] Zhou, Z., Ma, W., Zhang, S., Mu, Y., & Li, G. (2020). Experimental investigation of the path-dependent strength and deformation behaviours of frozen loess. Engineering Geology, 265, 105449. doi:10.1016/j.enggeo.2019.105449.
[10] Lei, B., Zhang, X., Fan, H., Gao, J., Du, Y., Ji, Y., & Gao, Z. (2025). Effects of Nano-SiO2 and Nano-CaCO3 on Mechanical Properties and Microstructure of Cement-Based Soil Stabilizer. Nanomaterials, 15(11), 785. doi:10.3390/nano15110785.
[11] Alshami, A. W., Ismael, B. H., Aswad, M. F., Majdi, A., Alshijlawi, M., Aljumaily, M. M., AlOmar, M. K., Aidan, I. A., & Hameed, M. M. (2022). Compaction Curves and Strength of Clayey Soil Modified with Micro and Nano Silica. Materials, 15(20), 7148. doi:10.3390/ma15207148.
[12] Phoon, K.-K., & Tang, C. (2019). Characterisation of geotechnical model uncertainty. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 13(2), 101–130. doi:10.1080/17499518.2019.1585545.
[13] Baecher, G. B. (2023). 2021 Terzaghi Lecture: Geotechnical Systems, Uncertainty, and Risk. Journal of Geotechnical and Geoenvironmental Engineering, 149(3). doi:10.1061/jggefk.gteng-10201.
[14] ASTM D854-14. (2023). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International, Pennsylvania, United States. doi:10.1520/D0854-14.
[15] ASTM D422-63(2007). (2014). Standard Test Method for Particle-Size Analysis of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D0422-63R07.
[16] ASTM D4943-08. (2018). Standard Test Method for Shrinkage Factors of Soils by the Wax Method. ASTM International, Pennsylvania, United States. doi:10.1520/D4943-08.
[17] ASTM D4318-00. (2017). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D4318-00.
[18] ASTM D698-12(2021). (2021). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, Pennsylvania, United States. doi:10.1520/D0698-12R21.
[19] ASTM D2487-17e1. (2025). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-17E01.
[20] BS 1377: 1990. (1990). Methods of test for soils for civil engineering purposes. British Standards Institution (BSI), London, United Kingdom.
[21] Head, K. H., & Epps, R. J. (1998). Manual of soil laboratory testing. Volume 3: effective stress tests. John Wiley, Hoboken, United States.
[22] ASTM D5907-18. (2025). Standard Test Methods for Filterable Matter (Total Dissolved Solids) and Nonfilterable Matter (Total Suspended Solids) in Water. ASTM International, Pennsylvania, United States. doi:10.1520/D5907-18.
[23] ASTM D512-23. (2023). Standard Test Methods for Chloride Ion In Water. ASTM International, Pennsylvania, United States. doi:10.1520/D0512-23.
[24] ASTM D2974-14. (2020). Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D2974-14.
[25] Kalhor, A., Ghazavi, M., & Roustaei, M. (2022). Impacts of Nano-silica on Physical Properties and Shear Strength of Clayey Soil. Arabian Journal for Science and Engineering, 47(4), 5271–5279. doi:10.1007/s13369-021-06453-2.
[26] Ibrahim, M., Johari, M. A. M., Maslehuddin, M., & Rahman, M. K. (2018). Influence of nano-SiO2 on the strength and microstructure of natural pozzolan based alkali activated concrete. Construction and Building Materials, 173, 573–585. doi:10.1016/j.conbuildmat.2018.04.051.
[27] Abdulamer, H. N., & Daham, H. A. (2025). Geotechnical Study of Expansive Soil Treated with Nano-Calcium Carbonate Materials in Al-Faw City, Southern Iraq. Tikrit Journal of Engineering Sciences, 32(1), 1–8. doi:10.25130/tjes.32.1.14.
[28] Regalla, S. S. (2024). Effect of nano SiO2 on rheology, nucleation seeding, hydration mechanism, mechanical properties and microstructure amelioration of ultra-high-performance concrete. Case Studies in Construction Materials, 20, e03147. doi:10.1016/j.cscm.2024.e03147.
[29] Yao, K., An, D., Wang, W., Li, N., Zhang, C., & Zhou, A. (2020). Effect of nano-MgO on mechanical performance of cement stabilized silty clay. Marine Georesources & Geotechnology, 38(2), 250–255. doi:10.1080/1064119X.2018.1564406.
[30] Khayat, N., Ohadian, A., & Mokhberi, M. (2023). Long-term and microstructural studies of soft clay stabilization using municipal solid waste and Nano-MgO as an Eco-Friendly Method. Anthropogenic Pollution, 7(1), 35-54.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















