Self-Cleaning Cement Material with Bismuth Titanate Photocatalytic Additive
Downloads
Nowadays, mortars are building materials with various properties that can be achieved through the careful selection of components and the introduction of different modifying additives. An additive based on the TiO₂–Bi₂O₃ oxide system can be considered a modifying component with photocatalytic and biocidal properties capable of decomposing organic pollutants, viruses, bacteria, and fungal spores. The purpose of the work was to obtain cement compositions containing the additive, study their physical and mechanical properties, evaluate their photocatalytic activity in accordance with the UNI 11259-2016 standard, and assess their resistance to mold fouling. In this study, samples of cement–sand plaster with the TiO₂–Bi₂O₃ additive synthesized via citrate-based technology at 1.7 and 5.0 wt.% were prepared, and their physical, mechanical, photocatalytic, and biocidal properties were examined. As a result, the authors identified photocatalytic activity in both the UV and visible spectra, achieving 69% after 26 hours of UV irradiation. The samples demonstrated 100% resistance to mold fouling. The compressive strength of the modified samples increased by 32.0–39.0%; bending strength by 33–38.0%; and adhesion strength to the base by 60–70%. The cost calculation also confirmed the feasibility of introducing the additive at 1.7 wt.% into the cement composition. The resulting cement material formula can be recommended for designing fungi-resistant, self-cleaning plasters.
Downloads
[1] Pilipenko, A., Bobrova, E., & Zhukov, A. (2019). Optimization of plastic foam composition for insulation systems. E3S Web of Conferences, 91. doi:10.1051/e3sconf/20199102017.
[2] Novikov, N. V., Samchenko, S. V., & Okolnikova, G. E. (2020). Barite-containing radiation protective building materials. RUDN Journal of Engineering Researches, 21(1), 94–98. doi:10.22363/2312-8143-2020-21-1-94-98.
[3] Ali, M. A. E. M., Hafez, M. A. Y., Nagy, N. M., & Abed, N. S. (2025). Radiation shielding properties of sustainable concrete with novel plastering techniques. Annals of Nuclear Energy, 211. doi:10.1016/j.anucene.2024.110958.
[4] Hegyi, A., Grebenişan, E., Lăzărescu, A. V., Stoian, V., & Szilagyi, H. (2021). Influence of TiO2 nanoparticles on the resistance of cementitious composite materials to the action of fungal species. Materials, 14(16), 1–18. doi:10.3390/ma14164442.
[5] Ubaldi, F., Valeriani, F., Volpini, V., Lofrano, G., & Romano Spica, V. (2024). Antimicrobial Activity of Photocatalytic Coatings on Surfaces: A Systematic Review and Meta-Analysis. Coatings, 14(1), 1–30. doi:10.3390/coatings14010092.
[6] Strokova, V., Ogurtsova, Y., Gubareva, E., Nerovnaya, S., & Antonenko, M. (2024). Multifunctional Anatase–Silica Photocatalytic Material for Cements and Concretes. Journal of Composites Science, 8(6), 1–19. doi:10.3390/jcs8060207.
[7] Balykov, A., Nizina, T., & Volodin, S. (2023). Technological efficiency of mineral modifiers for cement materials with photocatalytic activity. E3S Web of Conferences, 458(5), 1–6. doi:10.1051/e3sconf/202345802026.
[8] Alshabander, B., & Abd-Alkader, M., B. (2023). Photocatalytic Degradation of Methyl blue by TiO2 Nanoparticles Incorporated in Cement. Iraqi Journal of Physics, 21(1), 10–20. doi:10.30723/ijp.v20i1.1042.
[9] Lapidus, A., Korolev, E., Topchiy, D., Kuzmina, T., Shekhovtsova, S., & Shestakov, N. (2022). Self-Cleaning Cement-Based Building Materials. Buildings, 12(5), 1–24. doi:10.3390/buildings12050606.
[10] Khannyra, S., Mosquera, M. J., Addou, M., & Gil, M. L. A. (2021). Cu-TiO2/SiO2 photocatalysts for concrete-based building materials: Self-cleaning and air de-pollution performance. Construction and Building Materials, 313, 1–15. doi:10.1016/j.conbuildmat.2021.125419.
[11] Truppi, A., Luna, M., Petronella, F., Falcicchio, A., Giannini, C., Comparelli, R., & Mosquera, M. J. (2018). Photocatalytic activity of TiO2/AuNRs-SiO2 nanocomposites applied to building materials. Coatings, 8(9), 1–20. doi:10.3390/COATINGS8090296.
[12] Putri, J. E. Y., & Pratama, M. M. A. (2023). Photocatalytic Concrete Using ZnO and Al2O3 - A Review. E3S Web of Conferences, 445, 1–7. doi:10.1051/e3sconf/202344501028.
[13] Al Hallak, M., Verdier, T., Bertron, A., Castelló Lux, K., El Atti, O., Fajerwerg, K., Fau, P., Hot, J., Roques, C., & Bailly, J. D. (2023). Comparison of Photocatalytic Biocidal Activity of TiO2, ZnO and Au/ZnO on Escherichia coli and on Aspergillus niger under Light Intensity Close to Real-Life Conditions. Catalysts, 13(7), 1–15. doi:10.3390/catal13071139.
[14] Sharafutdinov, K. B., Saraykina, K. A., Kashevarova, G. G., & Erofeev, V. T. (2022). the Use of Copper Nanomodified Calcium Carbonate as a Bactericidal Additive for Concrete. International Journal for Computational Civil and Structural Engineering, 18(2), 143–155. doi:10.22337/2587-9618-2022-18-2-143-155.
[15] Latyshevich, I. A., Hapankova, A. I., Kozlov, N. G., & Hliavitskaya, T. A. (2024). Biocide Additives (Review). Bulletin of the Saint Petersburg State Institute of Technology (Technical University), 69, 59–68. doi:10.36807/1998-9849-2024-69-95-59-68.
[16] Erofeev, V.T., Rodin, A.I., Karpushin, S.N., Sanyagina, Y.A., Klyuev, S.V., Sabitov, L.S. (2023). Biological and Climatic Resistance of Cement Composites Based on Biocidal Binders. Innovations and Technologies in Construction. BUILDINTECH BIT 2022. Lecture Notes in Civil Engineering, vol 307. Springer, Cham, Switzerland. doi:10.1007/978-3-031-20459-3_22.
[17] Liu, X., Xu, H., Li, D., Zou, Z., & Xia, D. (2019). Facile Preparation of BiOCl/ZnO Heterostructure with Oxygen-Rich Vacancies and Its Enhanced Photocatalytic Performance. ChemistrySelect, 4(42), 12245–12251. doi:10.1002/slct.201902964.
[18] Teng, D., Qu, J., Li, P., Jin, P., Zhang, J., Zhang, Y., & Cao, Y. (2022). Heterostructured α-Bi2O3/BiOCl Nanosheet for Photocatalytic Applications. Nanomaterials, 12(20), 1–14. doi:10.3390/nano12203631.
[19] Qin, K., Zhao, Q., Yu, H., Xia, X., Li, J., He, S., Wei, L., & An, T. (2021). A review of bismuth-based photocatalysts for antibiotic degradation: Insight into the photocatalytic degradation performance, pathways and relevant mechanisms. Environmental Research, 199, 1–13. doi:10.1016/j.envres.2021.111360.
[20] Wang, J., Liu, W., Zhong, D., Ma, Y., Ma, Q., Wang, Z., & Pan, J. (2019). Fabrication of bismuth titanate nanosheets with tunable crystal facets for photocatalytic degradation of antibiotic. Journal of Materials Science, 54(21), 13740–13752. doi:10.1007/s10853-019-03882-1.
[21] Samchenko, S. V., Kozlova, I. V., Korshunov, A. V., Zemskova, O. V., & Dudareva, M. O. (2023). Synthesis and Evaluation of Properties of an Additive Based on Bismuth Titanates for Cement Systems. Materials, 16(18), 1–13. doi:10.3390/ma16186262.
[22] Jia, J., Wang, Q., & Wang, Y. (2019). Synthesis of BixTiyOz/TiO2 heterojunction with enhanced visible-light photocatalytic activity and mechanism insight. Journal of Alloys and Compounds, 809, 1–9. doi:10.1016/j.jallcom.2019.151791.
[23] Vazquez-Munoz, R., Lopez, F. D., & Lopez-Ribot, J. L. (2020). Bismuth nanoantibiotics display anticandidal activity and disrupt the biofilm and cell morphology of the emergent pathogenic yeast candida auris. Antibiotics, 9(8), 1–15. doi:10.3390/antibiotics9080461.
[24] Rosário, J. dos S., Moreira, F. H., Rosa, L. H. F., Guerra, W., & Silva-Caldeira, P. P. (2023). Biological Activities of Bismuth Compounds: An Overview of the New Findings and the Old Challenges Not Yet Overcome. Molecules, 28(15), 1–30. doi:10.3390/molecules28155921.
[25] Palanisamy, K., Gurunathan, V., & Sivapriya, J. (2023). Biogenic Synthesis of Bismuth Oxide Nanoparticles and It’s Antifungal Activity. Oriental Journal of Chemistry, 39(3), 608–613. doi:10.13005/ojc/390310.
[26] Noviyanti, A. R., Eddy, D. R., Permana, M. D., & Risdiana. (2023). Heterophase of Bismuth Titanate as a Photocatalyst for Rhodamine B Degradation. Trends in Sciences, 20(10), 1–10. doi:10.48048/tis.2023.6147.
[27] Chen, K., Scott, J., Qu, F., Dong, W., Tsang, D. C., & Li, W. (2025). Advanced cement-based photocatalytic materials: Strategies for agglomeration control, aging resistance and process optimisation. Journal of Building Engineering, 113816. doi:10.1016/j.jobe.2025.113816.
[28] Mittapally, S., Taranum, R., & Parveen, S. (2018). Metal ions as antibacterial agents. Journal of Drug Delivery and Therapeutics, 8(6-s), 411–419. doi:10.22270/jddt.v8i6-s.2063.
[29] Dhage, S. R., Khollam, Y. B., Dhespande, S. B., Potdar, H. S., & Ravi, V. (2004). Synthesis of bismuth titanate by citrate method. Materials Research Bulletin, 39(13), 1993–1998. doi:10.1016/j.materresbull.2004.07.014.
[30] UNI EN 11259:2016. (2016). Determination of the Photocatalytic Activity of Hydraulic Binders-Rodammina Test Method. UNI Ente Nazionale Italiano di Unificazione, Milano, Italy.
[31] GOST 9.048-89. (1989). Unified system of corrosion and ageing protection. Technical items. Methods of laboratory tests for mould resistance. USSR Standardization Institute, Moscow, Russia. (In Russian).
[32] GOST R 58277. (2018). Dry building mixes on cement binder. Test methods. USSR Standardization Institute, Moscow, Russia. (In Russian).
[33] Whitehead, K. A., Brown, M., Caballero, L., Lynch, S., Edge, M., Hill, C., Verran, J., & Allen, N. S. (2025). Nano-Titania Photocatalysis and Metal Doping to Deter Fungal Growth on Outdoor and Indoor Paint Surfaces Using UV and Fluorescent Light. Micro, 5(1), 5. doi:10.3390/micro5010005.
[34] Chi, M., Gu, L., Liu, K., Lin, J., Wang, Q., Yu, B., Wang, Z., Fu, X., Li, D., Zhao, G., & Li, C. (2025). The effect and mechanism of enhanced photocatalytic fungicidal activity on nitrogen doped carbon dots-modified titanium dioxide. Carbon, 238, 120314. doi:10.1016/j.carbon.2025.120314.
[35] Hernandez, R., Jimenez-Chávez, A., De Vizcaya, A., Lozano-Alvarez, J. A., Esquivel, K., & Medina-Ramírez, I. E. (2023). Synthesis of TiO2-Cu2+/CuI Nanocomposites and Evaluation of Antifungal and Cytotoxic Activity. Nanomaterials, 13(13), 1900. doi:10.3390/nano13131900.
[36] Pramila, S., Mallikarjunaswamy, C., Lakshmi Ranganatha, Nagaraju, G., Kavana, C. P., Chandan, S., & Spoorthy, H. P. (2024). Green synthesis of bismuth vanadate nanostructures for efficient photocatalytic and biological studies. Nano-Structures & Nano-Objects, 39, 101198. doi:10.1016/j.nanoso.2024.101198.
[37] Mallikarjunaswamy, C., Pramila, S., Shivaganga, G. S., Deepakumari, H. N., Prakruthi, R., Nagaraju, G., Parameswara, P., & Lakshmi Ranganatha, V. (2023). Facile synthesis of multifunctional bismuth oxychloride nanoparticles for photocatalysis and antimicrobial test. Materials Science and Engineering: B, 290, 1–9. doi:10.1016/j.mseb.2023.116323.
[38] Theodorakopoulos, G. V., Pylarinou, M., Sakellis, E., Katsaros, F. K., Likodimos, V., & Romanos, G. E. (2024). Mo-BiVO4 Photocatalytically Modified Ceramic Ultrafiltration Membranes for Enhanced Water Treatment Efficiency. Membranes, 14(5), 1–16. doi:10.3390/membranes14050112.
[39] Mosquera-Sánchez, L. P., Arciniegas-Grijalba, P. A., Patiño-Portela, M. C., Guerra-Sierra, B. E., Muñoz-Florez, J. E., & Rodríguez-Páez, J. E. (2020). Antifungal effect of zinc oxide nanoparticles (ZnO-NPs) on Colletotrichum sp., causal agent of anthracnose in coffee crops. Biocatalysis and Agricultural Biotechnology, 25, 101579. doi:10.1016/j.bcab.2020.101579.
[40] Saikia, R., Sharma, S., Kaman, P., & Chatterjee, A. (2025). Antifungal Efficacy of Green-Synthesized Zinc Oxide Nanoparticles Against Fusarium Spp.: an in Vitro Study. Plant Archives, 25(1), 1027–1036. doi:10.51470/plantarchives.2025.v25.no.1.154.
[41] Parada, J., Tortella, G., Seabra, A. B., Fincheira, P., & Rubilar, O. (2024). Potential Antifungal Effect of Copper Oxide Nanoparticles Combined with Fungicides against Botrytis cinerea and Fusarium oxysporum. Antibiotics, 13(3), 1–11. doi:10.3390/antibiotics13030215.
[42] Gudkov, S. V., Burmistrov, D. E., Fomina, P. A., Validov, S. Z., & Kozlov, V. A. (2024). Antibacterial Properties of Copper Oxide Nanoparticles (Review). International Journal of Molecular Sciences, 25(21), 11563. doi:10.3390/ijms252111563.
[43] Robinson, J. R., Isikhuemhen, O. S., & Anike, F. N. (2021). Fungal–metal interactions: A review of toxicity and homeostasis. Journal of Fungi, 7(3), 7 1–30. doi:10.3390/jof7030225.
[44] Prasher, P., Singh, M., & Mudila, H. (2018). Oligodynamic Effect of Silver Nanoparticles: a Review. BioNanoScience, 8(4), 951–962. doi:10.1007/s12668-018-0552-1.
[45] Hamidi, F., & Aslani, F. (2019). TiO2-based photocatalytic cementitious composites: Materials, properties, influential parameters, and assessment techniques. Nanomaterials, 9(10), 1–33. doi:10.3390/nano9101444.
[46] Ramasamy, S., Singaraj, R., Jagadeesan, V., & Tamilarasan, N. (2024). The influence of ZnO nanoparticles on mechanical and early-age hydration behaviour of cement paste. Matéria (Rio de Janeiro), 29(3), e20240068. doi:10.1590/1517-7076-rmat-2024-0068.
[47] Jiang, Z., Zhang, B., & Yu, X. (2025). Photocatalytic Cement Mortar with Durable Self-Cleaning Performance. Catalysts, 15(3), 249. doi:10.3390/catal15030249.
[48] Kozlova, I. V., & Dudareva, M. O. (2024). Methods of introducing a fine additive based on the TiO2 –Bi2O3 system into cement compositions. Nanotechnologies in Construction, 16(2), 90–99. doi:10.15828/2075-8545-2024-16-2-90-99.
[49] Jiang, Z., Zhang, B., & Yu, X. (2025). Photocatalytic Cement Mortar with Durable Self-Cleaning Performance. Catalysts, 15(3), 1–14. doi:10.3390/catal15030249.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















