Predicting the UCS of Industrial Byproduct-Based CLSM Using Machine Learning and Experiments
Downloads
This study investigated the development of sustainable Controlled Low Strength Material (CLSM) using industrial by-products pond ash, fly ash, and red mud as alternatives to conventional concrete constituents. This research employs a dual methodology: comprehensive experimental testing aligned with ASTM standards and the implementation of advanced machine learning (ML) techniques to predict the unconfined compressive strength (UCS) of CLSM mixes. Experimental datasets, generated through the variation of key material and mix design parameters, were utilized to train ensemble-based supervised ML models, including ADAboost, XGBoost, gradient boosting machine (GBM), and random forest (RF). A comparative performance evaluation was conducted, and the XGBoost model emerged as the most accurate predictor, achieving R² values of 0.969 for training and 0.933 for testing, surpassing GBM, ADAboost, and RF across multiple performance indicators. The optimal model was subsequently embedded into a graphical user interface (GUI) for UCS prediction. A sensitivity analysis based on the XGBoost model revealed that cement, water, and curing age were the most influential parameters affecting UCS, with cement exhibiting the highest impact value of 0.86 and a relative contribution of 19%. These findings emphasize the significance of these variables in strength development and mix optimization. The integration of experimental validation with predictive modeling not only advances the understanding of CLSM behavior but also underscores the utility of ML in the formulation of sustainable construction materials. This research supports the beneficial reuse of industrial waste, aligns with environmental sustainability goals, and provides an efficient and reliable tool for CLSM mix design.
Downloads
[1] Kurotimi, M. F., Franklin, A., Aladei, G., & Helen, O. (2017). Entrepreneurship education as a 21st century strategy for economic growth and sustainable development. International Journal of Mechanical and Industrial Engineering, 11(9), 2242-2253.
[2] Rosenfeld, S. A. (1995). Industrial strength strategies. Aspen Institute, Washington, United States.
[3] Xu, M., David, J. M., & Kim, S. H. (2018). The fourth industrial revolution: Opportunities and challenges. International Journal of Financial Research, 9(2), 90–95. doi:10.5430/ijfr.v9n2p90.
[4] Sharma, P., Gaur, V. K., Gupta, S., Varjani, S., Pandey, A., Gnansounou, E., ... & Wong, J. W. (2022). Trends in mitigation of industrial waste: Global health hazards, environmental implications and waste derived economy for environmental sustainability. Science of the Total Environment, 811, 152357. doi:10.1016/j.scitotenv.2021.152357.
[5] Chowdhary, P., Bharagava, R. N., Mishra, S., & Khan, N. (2020). Role of Industries in Water Scarcity and Its Adverse Effects on Environment and Human Health. Environmental Concerns and Sustainable Development, 1, 235–256. doi:10.1007/978-981-13-5889-0_12.
[6] Lini Dev, K., & Robinson, R. G. (2015). Pond Ash Based Controlled Low Strength Flowable Fills for Geotechnical Engineering Applications. International Journal of Geosynthetics and Ground Engineering, 1(4), 32. doi:10.1007/s40891-015-0035-1.
[7] Bhatt, A., Priyadarshini, S., Acharath Mohanakrishnan, A., Abri, A., Sattler, M., & Techapaphawit, S. (2019). Physical, chemical, and geotechnical properties of coal fly ash: A global review. Case Studies in Construction Materials, 11. doi:10.1016/j.cscm.2019.e00263.
[8] Do, T. M., & Kim, Y. sang. (2016). Engineering properties of controlled low strength material (CLSM) incorporating red mud. International Journal of Geo-Engineering, 7(1), 7. doi:10.1186/s40703-016-0022-y.
[9] Kaliyavaradhan, S. K., Ling, T. C., Guo, M. Z., & Mo, K. H. (2019). Waste resources recycling in controlled low-strength material (CLSM): A critical review on plastic properties. Journal of Environmental Management, 241, 383–396. doi:10.1016/j.jenvman.2019.03.017.
[10] Ibrahim, M., Rahman, M. K., Najamuddin, S. K., Alhelal, Z. S., & Acero, C. E. (2022). A review on utilization of industrial by-products in the production of controlled low strength materials and factors influencing the properties. Construction and Building Materials, 325, 325. doi:10.1016/j.conbuildmat.2022.126704.
[11] Ling, T. C., Kaliyavaradhan, S. K., & Poon, C. S. (2018). Global perspective on application of controlled low-strength material (CLSM) for trench backfilling – An overview. Construction and Building Materials, 158, 535–548. doi:10.1016/j.conbuildmat.2017.10.050.
[12] Le, D. H., & Nguyen, K. H. (2016). An assessment of eco-friendly controlled low-strength material. Procedia Engineering, 142, 260–267. doi:10.1016/j.proeng.2016.02.040.
[13] ACI 229R-99. (1999). Controlled Low-Strength Materials. American Concrete Institute (ACI), Farmington Hills, United States.
[14] Chompoorat, T., Likitlersuang, S., & Jongvivatsakul, P. (2018). The Performance of Controlled Low-strength Material Base Supporting a High-volume Asphalt Pavement. KSCE Journal of Civil Engineering, 22(6), 2055–2063. doi:10.1007/s12205-018-1527-z.
[15] Bassani, M., Khosravifar, S., Goulias, D. G., & Schwartz, C. W. (2015). Long-term resilient and permanent deformation behaviour of controlled low-strength materials for pavement applications. Transportation Geotechnics, 2, 108–118. doi:10.1016/j.trgeo.2014.12.001.
[16] Hoopes, R. (1998). Engineering Properties of Air-Modified Controlled Low-Strength Material. The Design and Application of Controlled Low-Strength Materials (Flowable Fill), 87–101, ASTM International, Pennsylvania, United States. doi:10.1520/stp13064s.
[17] Amlashi, A. T., Abdollahi, S. M., Goodarzi, S., & Ghanizadeh, A. R. (2019). Soft computing based formulations for slump, compressive strength, and elastic modulus of bentonite plastic concrete. Journal of Cleaner Production, 230, 1197–1216. doi:10.1016/j.jclepro.2019.05.168.
[18] Inqiad, W. Bin, Siddique, M. S., Ali, M., & Najeh, T. (2024). Predicting 28-day compressive strength of fibre-reinforced self-compacting concrete (FR-SCC) using MEP and GEP. Scientific Reports, 14(1), 1–21. doi:10.1038/s41598-024-65905-5.
[19] Kumar, S., Kumar, D. R., Wipulanusat, W., & Keawsawasvong, S. (2024). Development of ANN-based metaheuristic models for the study of the durability characteristics of high-volume fly ash self-compacting concrete with silica fume. Journal of Building Engineering, 94, 109844. doi:10.1016/j.jobe.2024.109844.
[20] Zhao, G., Pan, X., Yan, H., Tian, J., Han, Y., & Guan, H. (2024). Predicting engineering properties of controlled low-strength material made from waste soil using optimized SVR models. Case Studies in Construction Materials, 20. doi:10.1016/j.cscm.2024.e03325.
[21] Arachchilage, C. B., Fan, C., Zhao, J., Huang, G., & Liu, W. V. (2023). A machine learning model to predict unconfined compressive strength of alkali-activated slag-based cemented paste backfill. Journal of Rock Mechanics and Geotechnical Engineering, 15(11), 2803–2815. doi:10.1016/j.jrmge.2022.12.009.
[22] Yao, Q., Tu, Y., Yang, J., & Zhao, M. (2024). Hybrid XGB model for predicting unconfined compressive strength of solid waste-cement-stabilized cohesive soil. Construction and Building Materials, 449, 138242. doi:10.1016/j.conbuildmat.2024.138242.
[23] Wang, Y., Chen, G., Xia, J., Yang, H., Zhou, Y., Song, K., & Tan, S. (2025). Experimental and machine learning-based optimization of mix design and compressive strength prediction for a novel dual-waste backfill material. Case Studies in Construction Materials, 23. doi:10.1016/j.cscm.2025.e05152.
[24] Sun, Y. D., Li, C., Bi, Q. Y., Li, J. W., Zhang, J. L., Lu, X. Y., & Yang, Y. (2025). Experimental study and machine learning prediction on compressive strength of industrial waste-solidified marine soft soil under dry-wet cycles. Case Studies in Construction Materials, e04943. doi:10.1016/j.cscm.2025.e04943.
[25] Abdulalim Alabdullah, A., Iqbal, M., Zahid, M., Khan, K., Nasir Amin, M., & Jalal, F. E. (2022). Prediction of rapid chloride penetration resistance of metakaolin based high strength concrete using light GBM and XGBoost models by incorporating SHAP analysis. Construction and Building Materials, 345, 128296. doi:10.1016/j.conbuildmat.2022.128296.
[26] Duan, J., Asteris, P. G., Nguyen, H., Bui, X. N., & Moayedi, H. (2021). A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model. Engineering with Computers, 37(4), 3329–3346. doi:10.1007/s00366-020-01003-0.
[27] Pradeep, T., Samui, P., Kardani, N., & Asteris, P. G. (2022). Ensemble unit and AI techniques for prediction of rock strain. Frontiers of Structural and Civil Engineering, 16(7), 858–870. doi:10.1007/s11709-022-0831-3.
[28] Kumar, R., Kumar, S., Rai, B., & Samui, P. (2024). Development of hybrid gradient boosting models for predicting the compressive strength of high-volume fly ash self-compacting concrete with silica fume. Structures, 66, 66. doi:10.1016/j.istruc.2024.106850.
[29] Jas, K., & Dodagoudar, G. R. (2023). Explainable machine learning model for liquefaction potential assessment of soils using XGBoost-SHAP. Soil Dynamics and Earthquake Engineering, 165. doi:10.1016/j.soildyn.2022.107662.
[30] Kumar, D. R., Samui, P., & Burman, A. (2022). Prediction of Probability of Liquefaction Using Soft Computing Techniques. Journal of The Institution of Engineers (India): Series A, 103(4), 1195–1208. doi:10.1007/s40030-022-00683-9.
[31] Su, J., Wang, Y., Niu, X., Sha, S., & Yu, J. (2022). Prediction of ground surface settlement by shield tunneling using XGBoost and Bayesian Optimization. Engineering Applications of Artificial Intelligence, 114, 105020. doi:10.1016/j.engappai.2022.105020.
[32] Xiao, R., Polaczyk, P., Jiang, X., Zhang, M., Wang, Y., & Huang, B. (2021). Cementless controlled low-strength material (CLSM) based on waste glass powder and hydrated lime: Synthesis, characterization and thermodynamic simulation. Construction and Building Materials, 275. doi:10.1016/j.conbuildmat.2020.122157.
[33] Tran, D. T., Onjaipurn, T., Kumar, D. R., Chim-Oye, W., Keawsawasvong, S., & Jamsawang, P. (2024). An eXtreme Gradient Boosting prediction of uplift capacity factors for 3D rectangular anchors in natural clays. Earth Science Informatics, 17(3), 2027–2041. doi:10.1007/s12145-024-01269-8.
[34] Jalal, F. E., & Iqbal, M. (2023). Unconfined compression strength modelling of expansive soils for sustainable construction: GEP vs MEP. Environmental Earth Sciences, 82(14), 1–12. doi:10.1007/s12665-023-11049-0.
[35] Liu, K., Zhang, L., Wang, W., Zhang, G., Xu, L., Fan, D., & Yu, R. (2023). Development of compressive strength prediction platform for concrete materials based on machine learning techniques. Journal of Building Engineering, 80, 107977. doi:10.1016/j.jobe.2023.107977.
[36] Kardani, N., Bardhan, A., Roy, B., Samui, P., Nazem, M., Armaghani, D. J., & Zhou, A. (2022). A novel improved Harris Hawks optimization algorithm coupled with ELM for predicting permeability of tight carbonates. Engineering with Computers, 38, 4323–4346. doi:10.1007/s00366-021-01466-9.
[37] Sheen, Y. N., Zhang, L. H., & Le, D. H. (2013). Engineering properties of soil-based controlled low-strength materials as slag partially substitutes to Portland cement. Construction and Building Materials, 48, 822-829. doi:10.1016/j.conbuildmat.2013.07.046.
[38] ASTM D4832-16e1. (2023). Standard Test Method for Preparation and Testing of Controlled Low Strength Material (CLSM) Test Cylinders. ASTM International, Pennsylvania, United States. doi:10.1520/D4832-16E01.
[39] ASTM D6103-04. (2013). Standard Test Method for Flow Consistency of Controlled Low Strength Material (CLSM) (Withdrawn 2013). ASTM International, Pennsylvania, United States.
[40] ASTM D6023-07. (2015). Standard Test Method for Density (Unit Weight), Yield, Cement Content, and Air Content (Gravimetric) of Controlled Low-Strength Material (CLSM). ASTM International, Pennsylvania, United States. doi:10.1520/D6023-07.
[41] Bardhan, A., Biswas, R., Kardani, N., Iqbal, M., Samui, P., Singh, M. P., & Asteris, P. G. (2022). A novel integrated approach of augmented grey wolf optimizer and ANN for estimating axial load carrying-capacity of concrete-filled steel tube columns. Construction and Building Materials, 337, 127454. doi:10.1016/j.conbuildmat.2022.127454.
[42] Kumar, S., Rai, B., Biswas, R., Samui, P., & Kim, D. (2020). Prediction of rapid chloride permeability of self-compacting concrete using Multivariate Adaptive Regression Spline and Minimax Probability Machine Regression. Journal of Building Engineering, 32, 101490. doi:10.1016/j.jobe.2020.101490.
[43] Biswas, R., Rai, B., Samui, P., & Roy, S. S. (2020). Estimating concrete compressive strength using MARS, LSSVM and GP. Engineering Journal, 24(2), 41–52. doi:10.4186/ej.2020.24.2.41.
[44] Kumar, S., Kumar, R., Rai, B., & Samui, P. (2024). Prediction of compressive strength of high-volume fly ash self-compacting concrete with silica fume using machine learning techniques. Construction and Building Materials, 438, 136933. doi:10.1016/j.conbuildmat.2024.136933.
[45] Dev, K. L., Kumar, D. R., & Wipulanusat, W. (2024). Machine learning prediction of the unconfined compressive strength of controlled low strength material using fly ash and pond ash. Scientific Reports, 14(1), 27540. doi:10.1038/s41598-024-78050-w.
[46] Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, 10(3), 282–290. doi:10.1016/0022-1694(70)90255-6.
[47] Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250. doi:10.5194/gmd-7-1247-2014.
[48] Kumar, M., Biswas, R., Kumar, D. R., Pradeep, T., & Samui, P. (2022). Metaheuristic models for the prediction of bearing capacity of pile foundation. Geomechanics and Engineering, 31(2), 129–147. doi:10.12989/gae.2022.31.2.129.
[49] Kumar, D. R., Samui, P., & Burman, A. (2022). Prediction of probability of liquefaction using hybrid ANN with optimization techniques. Arabian Journal of Geosciences, 15(20), 1587. doi:10.1007/s12517-022-10855-3.
[50] Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics and Data Analysis, 38(4), 367–378. doi:10.1016/S0167-9473(01)00065-2.
[51] Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in Neurorobotics, 7(DEC), 21. doi:10.3389/fnbot.2013.00021.
[52] Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. Proceedings of the Thirteenth International Conference (ICML '96), 3-6 July, 1996, Bari, Italy.
[53] Chen, T., & Guestrin, C. (2016). XGBoost. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. doi:10.1145/2939672.2939785.
[54] Xia, Y., Liu, C., Li, Y. Y., & Liu, N. (2017). A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring. Expert Systems with Applications, 78, 225–241. doi:10.1016/j.eswa.2017.02.017.
[55] Zhou, J., Qiu, Y., Zhu, S., Armaghani, D. J., Khandelwal, M., & Mohamad, E. T. (2021). Estimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian optimization. Underground Space (China), 6(5), 506–515. doi:10.1016/j.undsp.2020.05.008.
[56] Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. doi:10.1023/a:1010933404324.
[57] Belgiu, M., & Drăgu, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31. doi:10.1016/j.isprsjprs.2016.01.011.
[58] Kim, Y. sang, Do, T. M., Kim, M. J., Kim, B. J., & Kim, H. K. (2018). Utilization of by-product in controlled low-strength material for geothermal systems: Engineering performances, environmental impact, and cost analysis. Journal of Cleaner Production, 172, 909–920. doi:10.1016/j.jclepro.2017.10.260.
[59] Dev, K. L., Kumar, D. R., & Wipulanusat, W. (2025). Performance Evaluation of Pond Ash-Enhanced Flowable Fill for Plastic Concrete Cutoff Walls in Earthen Dams Using Advanced Machine Learning Models. Arabian Journal for Science and Engineering, 1–25. doi:10.1007/s13369-025-10228-4.
[60] Jitchaijaroen, W., Ranjan Kumar, D., Keawsawasvong, S., Wipulanusat, W., & Jamsawang, P. (2024). Hybrid artificial neural network models for bearing capacity evaluation of a strip footing on sand based on Bolton failure criterion. Transportation Geotechnics, 48. doi:10.1016/j.trgeo.2024.101347.
[61] Shin, Y., Jang, J. G., Choi, J., Jun, G., Park, C., Kim, G. M., & Yang, B. (2023). Utilization of artificial interior stone sludge as fine aggregate in controlled low-strength material (CLSM). Journal of Building Engineering, 71. doi:10.1016/j.jobe.2023.106441.
[62] Pant, A., & Ramana, G. V. (2022). Prediction of pullout interaction coefficient of geogrids by extreme gradient boosting model. Geotextiles and Geomembranes, 50(6), 1188–1198. doi:10.1016/j.geotexmem.2022.08.003.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















