Statistical Optimization of Blending Conditions and Performance Evaluation of Optimal Bio-Asphalt Content
Downloads
To mitigate environmental impacts and promote sustainability in highway construction, this study investigates the optimization of blending conditions and the performance evaluation of bio-modified asphalt binder incorporating bio-asphalt derived from the pyrolysis of waste cooking oil (WCO) and low-density polyethylene (LDPE). A response surface approach was employed to optimize key blending parameters—temperature, speed, and time—based on critical physical properties of the binder. Furthermore, the optimized bio-asphalt binder was further evaluated through rheological performance tests (multiple stress creep recovery and linear amplitude sweep) and mechanical performance tests (Marshall stability, tensile strength ratio, resilient modulus, indirect tensile fatigue, and dynamic creep). The optimal conditions were identified as 130°C, 1000 rpm, and 42.37 min. Statistical validation using ANOVA, residual analysis, leverage, and Cook’s distance confirmed the model’s reliability, with prediction errors remaining below 5%. The bio-modified asphalt binder exhibited enhanced elastic recovery and reduced non-recoverable creep compliance (Jnr), indicating superior resistance to permanent deformation in comparison with the control asphalt binder. Additionally, the bio-modified asphalt mixture demonstrates superior Marshall stability, resilient modulus, tensile strength ratio, retained stability, and resistance to deformation in comparison with the control asphalt binder. These results demonstrate the potential of bio-asphalt as a viable, eco-friendly modifier for asphalt binders in tropical climates.
Downloads
[1] Yang, S. H., & Suciptan, T. (2016). Rheological behavior of Japanese cedar-based biobinder as partial replacement for bituminous binder. Construction and Building Materials, 114, 127–133. doi:10.1016/j.conbuildmat.2016.03.100.
[2] Alberta Innovates. (2021). Asphalt Binder Market Assessment. ADI Analytics, Houston, United States.
[3] Wen, H., Bhusal, S., & Wen, B. (2013). Laboratory Evaluation of Waste Cooking Oil-Based Bioasphalt as an Alternative Binder for Hot Mix Asphalt. Journal of Materials in Civil Engineering, 25(10), 1432–1437. doi:10.1061/(asce)mt.1943-5533.0000713.
[4] Gao, J., Guo, G., Wang, H., Jin, D., Bi, Y., & Jelagin, D. (2025). Research progress of bio-asphalt towards green pavement development: Preparation, properties, and mechanism. Fuel, 381. doi:10.1016/j.fuel.2024.133409.
[5] Bhavinlal, K., & Venudharan, V. (2024). Exploring production and performance of popular bio-oil modified asphalts: a state-of-the-art research review. Innovative Infrastructure Solutions, 9(10), 403. doi:10.1007/s41062-024-01716-x.
[6] Aziz, M. M. A., Rahman, M. T., Hainin, M. R., & Bakar, W. A. W. A. (2015). An overview on alternative binders for flexible pavement. Construction and Building Materials, 84, 315–319. doi:10.1016/j.conbuildmat.2015.03.068.
[7] Kantatham, K., Hoy, M., Sansri, S., Horpibulsuk, S., Suddeepong, A., Buritatum, A., … Phunpeng, V. (2024). Natural Rubber Latex-Modified Concrete with Bottom Ash for Sustainable Rigid Pavements. Civil Engineering Journal, 10(8), 2485–2501. doi:10.28991/CEJ-2024-010-08-05.
[8] Ju, Z., Ge, D., Lv, S., Jin, D., Xue, Y., Xian, J., & Zhang, W. (2024). Performance evaluation of bio-oil and high rubber content modified asphalt: More effective waste utilization. Case Studies in Construction Materials, 21. doi:10.1016/j.cscm.2024.e03828.
[9] Gao, J., Wang, H., You, Z., & Mohd Hasan, M. R. (2018). Research on properties of bio-asphalt binders based on time and frequency sweep test. Construction and Building Materials, 160, 786–793. doi:10.1016/j.conbuildmat.2018.01.048.
[10] Sun, D., Sun, G., Du, Y., Zhu, X., Lu, T., Pang, Q., Shi, S., & Dai, Z. (2017). Evaluation of optimized bio-asphalt containing high content waste cooking oil residues. Fuel, 202, 529–540. doi:10.1016/j.fuel.2017.04.069.
[11] Cavalli, M. C., Wu, W., & Poulikakos, L. (2024). Bio-based rejuvenators in asphalt pavements: A comprehensive review and analytical study. Journal of Road Engineering, 4(3), 282–291. doi:10.1016/j.jreng.2024.04.007.
[12] Al-Sabaeei, A. M., Napiah, M. B., Sutanto, M. H., Alaloul, W. S., & Usman, A. (2020). A systematic review of bio-asphalt for flexible pavement applications: Coherent taxonomy, motivations, challenges and future directions. Journal of Cleaner Production, 249. doi:10.1016/j.jclepro.2019.119357.
[13] Al-Sabaeei, A. M., Napiah, M. B., Sutanto, M. H., Alaloul, W. S., Yusoff, N. I. M., Khairuddin, F. H., & Memon, A. M. (2022). Evaluation of the high-temperature rheological performance of tire pyrolysis oil-modified bio-asphalt. International Journal of Pavement Engineering, 23(11), 4007–4022. doi:10.1080/10298436.2021.1931200.
[14] Chen, X., Li, Y., Cheng, P., Wang, H., & Nian, T. (2025). Green utilization of corn straw: Prediction of bio-oil liquefaction yield and application of bio-oil in asphalt. Industrial Crops and Products, 224, 120304. doi:10.1016/j.indcrop.2024.120304.
[15] Li, P., Yue, L., Ding, Z., Jiang, X., Li, H., An, L., & Tian, C. (2025). Review on composition properties, functionalization of bio-oil and its rejuvenation behavior and mechanism on aged asphalt. Journal of Road Engineering, 5(1), 21–34. doi:10.1016/j.jreng.2024.07.002.
[16] Liu, C., Liao, X., Fan, G., Yang, Z., Qin, X., Chen, J., & Lv, S. (2025). Utilization of bio-oil for separation of aged asphalt from reclaimed asphalt pavement: Mechanistic and experimental insights. Construction and Building Materials, 471. doi:10.1016/j.conbuildmat.2025.140743.
[17] Salimon, J., Salih, N., & Yousif, E. (2010). Biolubricants: Raw materials, chemical modifications and environmental benefits. European Journal of Lipid Science and Technology, 112(5), 519–530. doi:10.1002/ejlt.200900205.
[18] Joshi, J. R., Bhanderi, K. K., & Patel, J. V. (2023). Waste cooking oil as a promising source for bio lubricants- A review. Journal of the Indian Chemical Society, 100(1), 100820. doi:10.1016/j.jics.2022.100820.
[19] De Feo, G., Ferrara, C., Giordano, L., & Ossèo, L. S. (2023). Assessment of Three Recycling Pathways for Waste Cooking Oil as Feedstock in the Production of Biodiesel, Biolubricant, and Biosurfactant: A Multi-Criteria Decision Analysis Approach. Recycling, 8(4), 64. doi:10.3390/recycling8040064.
[20] Lin, C. S. K., Pfaltzgraff, L. A., Herrero-Davila, L., Mubofu, E. B., Abderrahim, S., Clark, J. H., Koutinas, A. A., Kopsahelis, N., Stamatelatou, K., Dickson, F., Thankappan, S., Mohamed, Z., Brocklesby, R., & Luque, R. (2013). Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy and Environmental Science, 6(2), 426–464. doi:10.1039/c2ee23440h.
[21] van Grinsven, A., Toorn, E. van den, Veen, R. van der, & Kampman, B. (2020). Used Cooking Oil (UCO) as biofuel feedstock in the EU. CE Delft Committed to the Environment, 1–64. doi:10.13140/RG.2.2.18446.02885.
[22] Xu, N., Wang, H., Wang, H., Kazemi, M., & Fini, E. (2023). Research progress on resource utilization of waste cooking oil in asphalt materials: A state-of-the-art review. Journal of Cleaner Production, 385. doi:10.1016/j.jclepro.2022.135427.
[23] Elahi, Z., Jakarni, F. M., Muniandy, R., Hassim, S., Ab Razak, M. S., Ansari, A. H., & Ben Zair, M. M. (2021). Waste cooking oil as a sustainable bio modifier for asphalt modification: A review. Sustainability (Switzerland), 13(20), 11506. doi:10.3390/su132011506.
[24] Saboo, N., Sukhija, M., & Singh, G. (2021). Effect of Nanoclay on Physical and Rheological Properties of Waste Cooking Oil–Modified Asphalt Binder. Journal of Materials in Civil Engineering, 33(3). doi:10.1061/(asce)mt.1943-5533.0003598.
[25] Wang, C., Xue, L., Xie, W., You, Z., & Yang, X. (2018). Laboratory investigation on chemical and rheological properties of bio-asphalt binders incorporating waste cooking oil. Construction and Building Materials, 167, 348–358. doi:10.1016/j.conbuildmat.2018.02.038.
[26] Lee, S. Y., Kwak, D. Y., & Le, T. H. M. (2023). Laboratory evaluation on the aging susceptibility of reclaimed asphalt bitumen containing low-viscosity binder and cooking oil waste. Results in Engineering, 19. doi:10.1016/j.rineng.2023.101260.
[27] Jain, S., Shakyawar, P., Singh, S., & Chandrappa, A. K. (2025). The investigation of rheological properties of rejuvenated asphalt binder with waste cooking oil as rejuvenator. International Journal of Transportation Science and Technology, 18, 305–314. doi:10.1016/j.ijtst.2024.07.009.
[28] Portugal, A. C. X., Lucena, L. C. de F. L., Lucena, A. E. de F. L., Costa, D. B., & Lima, K. A. de. (2017). Rheological properties of asphalt binders prepared with maize oil. Construction and Building Materials, 152, 1015–1026. doi:10.1016/j.conbuildmat.2017.07.077.
[29] Ruikun, D., Huifang, Y., Mengzhen, Z., & Wang, H. (2022). Preparation of Asphalt Modifier Made of Waste Tire Crumb Rubber and Waste Cooking Oil. Journal of Materials in Civil Engineering, 34(8), 04022175. doi:10.1061/(asce)mt.1943-5533.0004323.
[30] Nizamuddin, S., Jamal, M., Gravina, R., & Giustozzi, F. (2020). Recycled plastic as bitumen modifier: The role of recycled linear low-density polyethylene in the modification of physical, chemical and rheological properties of bitumen. Journal of Cleaner Production, 266. doi:10.1016/j.jclepro.2020.121988.
[31] Phadke, G., & Rawtani, D. (2023). Bioplastics as polymeric building blocks: Paving the way for greener and cleaner environment. European Polymer Journal, 199. doi:10.1016/j.eurpolymj.2023.112453.
[32] Yu, X., Burnham, N. A., & Tao, M. (2015). Surface microstructure of bitumen characterized by atomic force microscopy. Advances in Colloid and Interface Science, 218, 17–33. doi:10.1016/j.cis.2015.01.003.
[33] Punith, V. S., & Veeraragavan, A. (2011). Behavior of Reclaimed Polyethylene Modified Asphalt Cement for Paving Purposes. Journal of Materials in Civil Engineering, 23(6), 833–845. doi:10.1061/(asce)mt.1943-5533.0000235.
[34] Abdy, C., Zhang, Y., Wang, J., Yang, Y., Artamendi, I., & Allen, B. (2022). Pyrolysis of polyolefin plastic waste and potential applications in asphalt road construction: A technical review. Resources, Conservation and Recycling, 180. doi:10.1016/j.resconrec.2022.106213.
[35] Khedaywi, T., Haddad, M., & Bataineh, H. (2023). Effect of waste plastic polyethylene terephthalate on properties of asphalt cement. Innovative Infrastructure Solutions, 8(9), 232. doi:10.1007/s41062-023-01208-4.
[36] Bensaada, A., Soudani, K., & Haddadi, S. (2021). Effects of short-term aging on the physical and rheological properties of plastic waste-modified bitumen. Innovative Infrastructure Solutions, 6(3), 135. doi:10.1007/s41062-021-00471-7.
[37] Ghani, U., Zamin, B., Tariq Bashir, M., Ahmad, M., Sabri, M. M. S., & Keawsawasvong, S. (2022). Comprehensive Study on the Performance of Waste HDPE and LDPE Modified Asphalt Binders for Construction of Asphalt Pavements Application. Polymers, 14(17), 3673. doi:10.3390/polym14173673.
[38] Singh, A., & Gupta, A. (2024). Mechanical and economical feasibility of LDPE Waste-modified asphalt mixtures: pathway to sustainable road construction. Scientific Reports, 14(1), 25311. doi:10.1038/s41598-024-75196-5.
[39] Abdullah, M. E., Ahmad, N. A., Jaya, R. P., Hassan, N. A., Yaacob, H., & Hainin, M. R. (2017). Effects of Waste Plastic on the Physical and Rheological Properties of Bitumen. IOP Conference Series: Materials Science and Engineering, 204(1), 012016. doi:10.1088/1757-899X/204/1/012016.
[40] Zhu, J., Lu, X., Balieu, R., & Kringos, N. (2016). Modelling and numerical simulation of phase separation in polymer modified bitumen by phase-field method. Materials and Design, 107, 322–332. doi:10.1016/j.matdes.2016.06.041.
[41] Memon, A. M., Hartadi Sutanto, M., Napiah, M., Khan, M. I., & Rafiq, W. (2020). Modeling and optimization of mixing conditions for petroleum sludge modified bitumen using response surface methodology. Construction and Building Materials, 264. doi:10.1016/j.conbuildmat.2020.120701.
[42] Kedarisetty, S., Biligiri, K. P., & Sousa, J. B. (2016). Advanced rheological characterization of Reacted and Activated Rubber (RAR) modified asphalt binders. Construction and Building Materials, 122, 12–22. doi:10.1016/j.conbuildmat.2016.06.043.
[43] Khan, K., Johari, M. A. M., Amin, M. N., Khan, M. I., & Iqbal, M. (2023). Optimization of colloidal nano-silica based cementitious mortar composites using RSM and ANN approaches. Results in Engineering, 20. doi:10.1016/j.rineng.2023.101390.
[44] Mohammed, B. S., Khed, V. C., & Nuruddin, M. F. (2018). Rubbercrete mixture optimization using response surface methodology. Journal of Cleaner Production, 171, 1605–1621. doi:10.1016/j.jclepro.2017.10.102.
[45] Mohammed, B. S., Fang, O. C., Anwar Hossain, K. M., & Lachemi, M. (2012). Mix proportioning of concrete containing paper mill residuals using response surface methodology. Construction and Building Materials, 35, 63–68. doi:10.1016/j.conbuildmat.2012.02.050.
[46] Liu, H., Zhang, M., Jiao, Y., & Fu, L. (2018). Preparation Parameter Analysis and Optimization of Sustainable Asphalt Binder Modified by Waste Rubber and Diatomite. Advances in Materials Science and Engineering, 3063620. doi:10.1155/2018/3063620.
[47] Varun, V. K., Mayakrishnan, M., & Somasundaram, M. (2024). Evaluation of the properties of bio-asphalt derived from waste cooking oil and low-density polyethylene through the pyrolysis process. Case Studies in Construction Materials, 21, 3604. doi:10.1016/j.cscm.2024.e03604.
[48] Sasidhar, K. B., Somasundaram, M., Yesuraj, K., Hariharan, S., Antunes, E., Ekambaram, P., & Kumar Arumugam, S. (2023). Optimization and production of renewable fuels from waste cooking oil and low-density polyethylene: Evaluating fuel properties and techno-economic feasibility of diesel replacement. Energy Conversion and Management, 294. doi:10.1016/j.enconman.2023.117558.
[49] Ministry of Road Transport & Highways. (2013). Specifications for Road Bridge Works (5th Revision). Indian Road Congress, new Delhi, India.
[50] IS: 73. (2013). Indian Standard Paving bitumen—Specification (Fourth Revision). Bureau of Indian Standards, New Delhi, India.
[51] Anderson, D. A., Christensen, D. W., Bahia, H. U., Dongre, R., Sharma, M. G., Antle, C. E., & Button, J. (1994). Binder characterization and evaluation, volume 3: Physical characterization. Strategic Highway Research Program, National Research Council, Washington, United States.
[52] Yan, K., Peng, Y., & You, L. (2020). Use of tung oil as a rejuvenating agent in aged asphalt: Laboratory evaluations. Construction and Building Materials, 239. doi:10.1016/j.conbuildmat.2019.117783.
[53] Zhang, H., Wu, J., Qin, Z., & Luo, Y. (2022). The effect of bio-oil on high-temperature performance of bio-oil recycled asphalt binders. Journal of Renewable Materials, 10(4), 1025–1037. doi:10.32604/JRM.2022.017483.
[54] Su, N., Xiao, F., Wang, J., Cong, L., & Amirkhanian, S. (2018). Productions and applications of bio-asphalts – A review. Construction and Building Materials, 183, 578–591. doi:10.1016/j.conbuildmat.2018.06.118.
[55] Lai, J., Wang, H., Wang, D., Fang, F., Wang, F., & Wu, T. (2014). Ultrasonic extraction of antioxidants from Chinese sumac (Rhus typhina L.) fruit using response surface methodology and their characterization. Molecules, 19(7), 9019–9032. doi:10.3390/molecules19079019.
[56] Dehouche, N., Kaci, M., & Mouillet, V. (2016). The effects of mixing rate on morphology and physical properties of bitumen/organo-modified montmorillonite nanocomposites. Construction and Building Materials, 114, 76–86. doi:10.1016/j.conbuildmat.2016.03.151.
[57] Abdullah, M. E., Zamhari, K. A., Hainin, M. R., Oluwasola, E. A., Nur, N. I., & Hassan, N. A. (2016). High temperature characteristics of warm mix asphalt mixtures with nanoclay and chemical warm mix asphalt modified binders. Journal of Cleaner Production, 122, 326–334. doi:10.1016/j.jclepro.2016.02.033.
[58] Shirzad, S., & Zouzias, H. (2024). Enhancing the performance of wood-based bio-asphalt: strategies and innovations. Clean Technologies and Environmental Policy, 26(7), 2095–2115. doi:10.1007/s10098-024-02745-x.
[59] Obaid, H. A., Eltwati, A., Hainin, M. R., Al-Jumaili, M. A., & Enieb, M. (2024). Modeling and design optimization of the performance of stone matrix asphalt mixtures containing low-density polyethylene and waste engine oil using the response surface methodology. Construction and Building Materials, 446. doi:10.1016/j.conbuildmat.2024.138037.
[60] Akinwande, M. O., Dikko, H. G., & Samson, A. (2015). Variance Inflation Factor: As a Condition for the Inclusion of Suppressor Variable(s) in Regression Analysis. Open Journal of Statistics, 5(7), 754–767. doi:10.4236/ojs.2015.57075.
[61] Hunter, R. N. (2015). The Shell Bitumen Handbook (6th Ed.). Thomas Telford Ltd., London, United Kingdom. doi:10.1680/tsbh.58378.
[62] Khairuddin, F. H., Alamawi, M. Y., Yusoff, N. I. M., Badri, K. H., Ceylan, H., & Tawil, S. N. M. (2019). Physicochemical and thermal analyses of polyurethane modified bitumen incorporated with Cecabase and Rediset: Optimization using response surface methodology. Fuel, 254. doi:10.1016/j.fuel.2019.115662.
[63] Gao, J., Wang, H., Liu, C., Ge, D., You, Z., & Yu, M. (2020). High-temperature rheological behavior and fatigue performance of lignin modified asphalt binder. Construction and Building Materials, 230. doi:10.1016/j.conbuildmat.2019.117063.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.