Sizing Optimization of Trusses Using Elitist Stepped Distribution Algorithm
Downloads
This study investigates the efficiency of the recently developed Elitist Stepped Distribution Algorithm (ESDA) as a metaheuristic framework for truss sizing optimization. ESDA builds upon the Cross-Entropy Method by introducing an elitist stepped sampling strategy that improves the balance between exploration and exploitation during the search process. To evaluate its effectiveness, ESDA is applied to a comprehensive test suite comprising seven benchmark truss optimization problems that cover a wide range of sizes, design variables, loading conditions, and constraint types. In all cases, the objective is to minimize structural weight while satisfying stress, displacement, and stability requirements. Numerical experiments are conducted with the proposed method, and the results are compared with those algorithms reported in the literature. The findings show that ESDA attains new best or near-best solutions for large-scale problems such as the 117-bar cantilever, 130-bar transmission tower, 354-bar dome, and 942-bar tower trusses, while also producing competitive results for the 25-bar, 72-bar, and 200-bar structures with relatively modest computational effort. The novelty of this work lies in demonstrating the robustness, efficiency, and scalability of ESDA across diverse benchmarks, highlighting its potential for future structural optimization applications.
Downloads
[1] Pucker, T., & Grabe, J. (2011). Structural optimization in geotechnical engineering: Basics and application. Acta Geotechnica, 6(1), 41–49. doi:10.1007/s11440-011-0134-7.
[2] Keleşoǧlu, Ö., & Ülker, M. (2005). Fuzzy optimization of geometrical nonlinear space truss design. Turkish Journal of Engineering and Environmental Sciences, 29(5), 321–329.
[3] Stolpe, M. (2016). Truss optimization with discrete design variables: a critical review. Structural and Multidisciplinary Optimization, 53(2), 349–374. doi:10.1007/s00158-015-1333-x.
[4] Hasançebi, O., Çarbaş, S., Doǧan, E., Erdal, F., & Saka, M. P. (2009). Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures. Computers and Structures, 87(5–6), 284–302. doi:10.1016/j.compstruc.2009.01.002.
[5] Hasançebi, O., & Azad, S. K. (2015). Adaptive dimensional search: A new metaheuristic algorithm for discrete truss sizing optimization. Computers and Structures, 154, 1–16. doi:10.1016/j.compstruc.2015.03.014.
[6] Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4(2), 65–85. doi:10.1007/BF00175354.
[7] Storn, R., & Price, K. (1997). Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4), 341–359. doi:10.1023/A:1008202821328.
[8] Kennedy, J., & Eberhart, R. (n.d.). Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks, 4, 1942–1948. doi:10.1109/icnn.1995.488968.
[9] Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: a new meta-heuristic. Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 1470–1477. doi:10.1109/cec.1999.782657.
[10] Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. doi:10.1126/science.220.4598.671.
[11] Altun, M., & Pekcan, O. (2021). Optimum Sizing of Truss Structures Using a Hybrid Flower Pollinations. Applications of Flower Pollination Algorithm and its Variants. Springer Tracts in Nature-Inspired Computing. Springer, Singapore. doi:10.1007/978-981-33-6104-1_6.
[12] Erol, O. K., & Eksin, I. (2006). A new optimization method: Big Bang-Big Crunch. Advances in Engineering Software, 37(2), 106–111. doi:10.1016/j.advengsoft.2005.04.005.
[13] Yalcin, Y., Orhon, M., & Pekcan, O. (2019). An automated approach for the design of Mechanically Stabilized Earth Walls incorporating metaheuristic optimization algorithms. Applied Soft Computing, 74, 547–566. doi:10.1016/j.asoc.2018.09.039.
[14] Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69, 46–61. doi:10.1016/j.advengsoft.2013.12.007.
[15] Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17–35. doi:10.1007/s00366-011-0241-y.
[16] Li, L. J., Huang, Z. B., & Liu, F. (2009). A heuristic particle swarm optimization method for truss structures with discrete variables. Computers and Structures, 87(7–8), 435–443. doi:10.1016/j.compstruc.2009.01.004.
[17] Kaveh, A., & Talatahari, S. (2009). Size optimization of space trusses using Big Bang-Big Crunch algorithm. Computers and Structures, 87(17–18), 1129–1140. doi:10.1016/j.compstruc.2009.04.011.
[18] Cheng, M. Y., Prayogo, D., Wu, Y. W., & Lukito, M. M. (2016). A Hybrid Harmony Search algorithm for discrete sizing optimization of truss structure. Automation in Construction, 69, 21–33. doi:10.1016/j.autcon.2016.05.023.
[19] Ponterosso, P., & Fox, D. S. J. (1999). Heuristically seeded genetic algorithms applied to truss optimisation. Engineering with Computers, 15(4), 345–355. doi:10.1007/s003660050029.
[20] Kaveh, A., & Talatahari, S. (2009). Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Computers & Structures, 87(5–6), 267–283. doi:10.1016/j.compstruc.2009.01.003.
[21] Tutuş, E.B., Pekcan, O., Altun, M., & Türkezer, M. (2021). Optimizing Reinforced Cantilever Retaining Walls Under Dynamic Loading Using Improved Flower Pollination Algorithm. Applications of Flower Pollination Algorithm and its Variants. Springer Tracts in Nature-Inspired Computing. Springer, Singapore. doi:10.1007/978-981-33-6104-1_7.
[22] Rubinstein, R. (1999). The Cross-Entropy Method for Combinatorial and Continuous Optimization. In Methodology And Computing In Applied Probability (Vol. 1, Issue 2, pp. 127–190). doi:10.1023/a:1010091220143.
[23] Rajeev, S., & Krishnamoorthy, C. S. (1992). Discrete Optimization of Structures Using Genetic Algorithms. Journal of Structural Engineering, 118(5), 1233–1250. doi:10.1061/(asce)0733-9445(1992)118:5(1233).
[24] Degertekin, S. O., Lamberti, L., & Ugur, I. B. (2018). Sizing, layout and topology design optimization of truss structures using the Jaya algorithm. Applied Soft Computing Journal, 70, 903–928. doi:10.1016/j.asoc.2017.10.001.
[25] AISC. (2016). Specification for Structural Steel Buildings-Allowable Stress Design and Plastic Design. American Institute of Steel Construction (AISC), Chicago, United States.
[26] AISC. (1994). Manual of Steel Construction, Load & Resistance Factor Design. American Institute of Steel Construction (AISC), Chicago, United States.
[27] Altun, M., & Pekcan, O. (2017). A modified approach to cross entropy method: Elitist stepped distribution algorithm. Applied Soft Computing Journal, 58, 756–769. doi:10.1016/j.asoc.2017.04.032.
[28] Hasançebi, O., Çarbas, S., & Saka, M. P. (2011). A reformulation of the ant colony optimization algorithm for large scale structural optimization. Civil-Comp Proceedings, 97. doi:10.4203/ccp.97.12.
[29] Wu, S. J., & Chow, P. T. (1995). Steady-state genetic algorithms for discrete optimization of trusses. Computers & Structures, 56(6), 979–991. doi:10.1016/0045-7949(94)00551-D.
[30] Hasançebi, O., Teke, T., & Pekcan, O. (2013). A bat-inspired algorithm for structural optimization. Computers and Structures, 128, 77–90. doi:10.1016/j.compstruc.2013.07.006.
[31] Camp, C. V., & Bichon, B. J. (2004). Design of Space Trusses Using Ant Colony Optimization. Journal of Structural Engineering, 130(5), 741–751. doi:10.1061/(asce)0733-9445(2004)130:5(741).
[32] Camp, C. V. (2007). Design of Space Trusses Using Big Bang–Big Crunch Optimization. Journal of Structural Engineering, 133(7), 999–1008. doi:10.1061/(asce)0733-9445(2007)133:7(999).
[33] Lee, K. S., Geem, Z. W., Lee, S. H. O., & Bae, K. W. (2005). The harmony search heuristic algorithm for discrete structural optimization. Engineering Optimization, 37(7), 663–684. doi:10.1080/03052150500211895.
[34] Erbatur, F., Hasançebi, O., Tütüncü, İ., & Kılıç, H. (2000). Optimal design of planar and space structures with genetic algorithms. Computers and Structures, 75(2), 209–224. doi:10.1016/S0045-7949(99)00084-X.
[35] Kaveh, A., & Ilchi Ghazaan, M. (2015). A comparative study of CBO and ECBO for optimal design of skeletal structures. Computers & Structures, 153, 137–147. doi:10.1016/j.compstruc.2015.02.028.
[36] Kaveh, A., & Bakhshpoori, T. (2016). An accelerated water evaporation optimization formulation for discrete optimization of skeletal structures. Computers & Structures, 177, 218–228. doi:10.1016/j.compstruc.2016.08.006.
[37] Ho-Huu, V., Nguyen-Thoi, T., Vo-Duy, T., & Nguyen-Trang, T. (2016). An adaptive elitist differential evolution for optimization of truss structures with discrete design variables. Computers & Structures, 165, 59–75. doi:10.1016/j.compstruc.2015.11.014.
[38] Le, D. T., Bui, D. K., Ngo, T. D., Nguyen, Q. H., & Nguyen-Xuan, H. (2019). A novel hybrid method combining electromagnetism-like mechanism and firefly algorithms for constrained design optimization of discrete truss structures. Computers & Structures, 212, 20–42. doi:10.1016/j.compstruc.2018.10.017.
[39] Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2012). Mine blast algorithm for optimization of truss structures with discrete variables. Computers & Structures, 102–103, 49–63. doi:10.1016/j.compstruc.2012.03.013.
[40] Degertekin, S. O., Lamberti, L., & Ugur, I. B. (2019). Discrete sizing/layout/topology optimization of truss structures with an advanced Jaya algorithm. Applied Soft Computing Journal, 79, 363–390. doi:10.1016/j.asoc.2019.03.058.
[41] Sonmez, M. (2011). Discrete optimum design of truss structures using artificial bee colony algorithm. Structural and Multidisciplinary Optimization, 43(1), 85–97. doi:10.1007/s00158-010-0551-5.
[42] Pham, V. H. S., Nguyen Dang, N. T., & Nguyen, V. N. (2024). Achieving efficiency in truss structural design using opposition-based geometric mean optimizer. Soft Computing, 28(17–18), 9883–9903. doi:10.1007/s00500-024-09838-1.
[43] Jiang, F., Wang, L., & Bai, L. (2021). An Improved Whale Algorithm and Its Application in Truss Optimization. Journal of Bionic Engineering, 18(3), 721–732. doi:10.1007/s42235-021-0041-z.
[44] Pierezan, J., dos Santos Coelho, L., Cocco Mariani, V., Hochsteiner de Vasconcelos Segundo, E., & Prayogo, D. (2021). Chaotic coyote algorithm applied to truss optimization problems. Computers and Structures, 242, 106353–106353. doi:10.1016/j.compstruc.2020.106353.
[45] Sadollah, A., Eskandar, H., Bahreininejad, A., & Kim, J. H. (2015). Water cycle, mine blast and improved mine blast algorithms for discrete sizing optimization of truss structures. Computers & Structures, 149, 1–16. doi:10.1016/j.compstruc.2014.12.003.
[46] Kaveh, A., & Talatahari, S. (2009). A particle swarm ant colony optimization for truss structures with discrete variables. Journal of Constructional Steel Research, 65(8–9), 1558–1568. doi:10.1016/j.jcsr.2009.04.021.
[47] Kaveh, A., & Talatahari, S. (2010). Optimum design of skeletal structures using imperialist competitive algorithm. Computers & Structures, 88(21–22), 1220–1229. doi:10.1016/j.compstruc.2010.06.011.
[48] Gholizadeh, S., & Milany, A. (2018). An improved fireworks algorithm for discrete sizing optimization of steel skeletal structures. Engineering Optimization, 50(11), 1829–1849. doi:10.1080/0305215X.2017.1417402.
[49] Kaveh, A., & Biabani Hamedani, K. (2025). Success-History Based Adaptive Differential Evolution Algorithm for Discrete Structural Optimization. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 49(1), 409–431. doi:10.1007/s40996-024-01490-x.
[50] Pham, V. H. S., Nguyen Dang, N. T., & Nguyen, V. N. (2024). Efficient Truss Design: A Hybrid Geometric Mean Optimizer for Better Performance. Applied Computational Intelligence and Soft Computing, 2024(4216718). doi:10.1155/2024/4216718.
[51] Fardi Zarnagh, S., Nouri, M., & Mousavi Ghasemi, S. A. (2026). Optimum Design of Larg Scale Truss Structuree by Levy Flight-Based Improved Coot Optimization Algorithm Considering Discrete Variables. International Journal of Engineering, Transactions B: Applications, 39(1), 59–75. doi:10.5829/ije.2026.39.01a.06.
[52] Perez, R. E., & Behdinan, K. (2007). Particle swarm approach for structural design optimization. Computers & Structures, 85(19–20), 1579–1588. doi:10.1016/j.compstruc.2006.10.013.
[53] Kaveh, A., & Mahdavi, V. R. (2014). Colliding bodies optimization: A novel meta-heuristic method. Computers and Structures, 139, 18–27. doi:10.1016/j.compstruc.2014.04.005.
[54] Adil, B., & Cengiz, B. (2020). Optimal design of truss structures using weighted superposition attraction algorithm. Engineering with Computers, 36(3), 965–979. doi:10.1007/s00366-019-00744-x.
[55] Degertekin, S. O. (2012). Improved harmony search algorithms for sizing optimization of truss structures. Computers & Structures, 92–93, 229–241. doi:10.1016/j.compstruc.2011.10.022.
[56] Kaveh, A., & Khayatazad, M. (2013). Ray optimization for size and shape optimization of truss structures. Computers & Structures, 117, 82–94. doi:10.1016/j.compstruc.2012.12.010.
[57] Kaveh, A., & Zolghadr, A. (2017). Cyclical parthenogenesis algorithm for layout optimization of truss structures with frequency constraints. Engineering Optimization, 49(8), 1317-1334. doi:10.1080/0305215X.2016.1245730.
[58] Kaveh, A., Sheikholeslami, R., Talatahari, S., & Keshvari-Ilkhichi, M. (2014). Chaotic swarming of particles: A new method for size optimization of truss structures. Advances in Engineering Software, 67, 136–147. doi:10.1016/j.advengsoft.2013.09.006.
[59] Kaveh, A., & Ilchi Ghazaan, M. (2014). Enhanced colliding bodies optimization for design problems with continuous and discrete variables. Advances in Engineering Software, 77, 66–75. doi:10.1016/j.advengsoft.2014.08.003.
[60] Degertekin, S. O., Lamberti, L., & Hayalioglu, M. S. (2017). Heat transfer search algorithm for sizing optimization of truss structures. Latin American Journal of Solids and Structures, 14(3), 373–397. doi:10.1590/1679-78253297.
[61] Kaveh, A., & Zakian, P. (2018). Improved GWO algorithm for optimal design of truss structures. Engineering with Computers, 34(4), 685–707. doi:10.1007/s00366-017-0567-1.
[62] Degertekin, S. O., & Hayalioglu, M. S. (2013). Sizing truss structures using teaching-learning-based optimization. Computers and Structures, 119, 177–188. doi:10.1016/j.compstruc.2012.12.011.
[63] Avcı, M. S., Yavuz, D., Ercan, E., & Nuhoğlu, A. (2024). Efficient Sizing and Layout Optimization of Truss Benchmark Structures Using ISRES Algorithm. Applied Sciences (Switzerland), 14(8), 3324. doi:10.3390/app14083324.
[64] Kooshkbaghi, M., & Kaveh, A. (2020). Sizing Optimization of Truss Structures with Continuous Variables by Artificial Coronary Circulation System Algorithm. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 44(1), 1–20. doi:10.1007/s40996-019-00254-2.
[65] Nemati, M., Zandi, Y., & Sabouri, J. (2024). Truss sizing optimum design using a metaheuristic approach: Connected banking system. Heliyon, 10(20), e39308. doi:10.1016/j.heliyon.2024.e39308.
[66] Pham, H. A., & Vu, T. C. (2024). Enhanced differential evolution-Rao optimization with distance comparison method and its application in optimal sizing of truss structures. Journal of Computational Science, 80, 102327. doi:10.1016/j.jocs.2024.102327.
[67] Azad, S. K., & Hasançebi, O. (2015). Discrete sizing optimization of steel trusses under multiple displacement constraints and load cases using guided stochastic search technique. Structural and Multidisciplinary Optimization, 52(2), 383–404. doi:10.1007/s00158-015-1233-0.
[68] Azad, S. K. (2017). Enhanced hybrid metaheuristic algorithms for optimal sizing of steel truss structures with numerous discrete variables. Structural and Multidisciplinary Optimization, 55(6), 2159–2180. doi:10.1007/s00158-016-1634-8.
[69] Azad, S. K. (2019). Monitored convergence curve: a new framework for metaheuristic structural optimization algorithms. Structural and Multidisciplinary Optimization, 60(2), 481–499. doi:10.1007/s00158-019-02219-5.
[70] Ozbasaran, H., & Eryilmaz Yildirim, M. (2020). Truss-sizing optimization attempts with CSA: a detailed evaluation. Soft Computing, 24(22), 16775–16801. doi:10.1007/s00500-020-04972-y.
[71] Azad, S., Hasançebi, O., & Saka, M. P. (2014). Guided stochastic search technique for discrete sizing optimization of steel trusses: A design-driven heuristic approach. Computers and Structures, 134, 62–74. doi:10.1016/j.compstruc.2014.01.005.
[72] Azad, S. K., & Hasançebi, O. (2014). An elitist self-adaptive step-size search for structural design optimization. Applied Soft Computing Journal, 19, 226–235. doi:10.1016/j.asoc.2014.02.017.
[73] Toǧan, V., & Daloǧlu, A. T. (2008). An improved genetic algorithm with initial population strategy and self-adaptive member grouping. Computers and Structures, 86(11–12), 1204–1218. doi:10.1016/j.compstruc.2007.11.006.
[74] Talebpour, M. H., Kaveh, A., & Kalatjari, V. R. (2014). Optimization of skeletal structures using a hybridized ant colony-harmony search-genetic algorithm. Iranian Journal of Science and Technology. Transactions of Civil Engineering, 38(C1), 1.
[75] Gholizadeh, S., Razavi, N., & Shojaei, E. (2019). Improved black hole and multiverse algorithms for discrete sizing optimization of planar structures. Engineering Optimization, 51(10), 1645–1667. doi:10.1080/0305215X.2018.1540697.
[76] Hasançebi, O. (2008). Adaptive evolution strategies in structural optimization: Enhancing their computational performance with applications to large-scale structures. Computers and Structures, 86(1–2), 119–132. doi:10.1016/j.compstruc.2007.05.012.
[77] Hasançebi, O., & Erbatur, F. (2002). On efficient use of simulated annealing in complex structural optimization problems. Acta Mechanica, 157(1–4), 27–50. doi:10.1007/BF01182153.
[78] Rahami, H., Kaveh, A., Aslani, M., & Asl, R. N. (2011). A hybrid modified genetic-nelder mead simplex algorithm for large-scale truss optimization. International Journal of Optimization in Civil Engineering, 1(1), 29-46.
[79] Talatahari, S., Gandomi, A. H., & Yun, G. J. (2014). Optimum design of tower structures using Firefly Algorithm. Structural Design of Tall and Special Buildings, 23(5), 350–361. doi:10.1002/tal.1043.
[80] Dehghani, A. A., Hamzehei-Javaran, S., Shojaee, S., & Goodarzimehr, V. (2024). Optimal analysis and design of large-scale problems using a Modified Adolescent Identity Search Algorithm. Soft Computing, 28(17–18), 9405–9432. doi:10.1007/s00500-024-09689-w.
[81] Gandomi, A. H., Talatahari, S., Yang, X. S., & Deb, S. (2013). Design optimization of truss structures using cuckoo search algorithm. Structural Design of Tall and Special Buildings, 22(17), 1330–1349. doi:10.1002/tal.1033.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















