Statistical Analyses of the Euphrates River Entry and Hydrological Drought Assessment (SDI)
Downloads
The Euphrates River, a vital water resource in Iraq, has seen a marked decline in flow over the past two decades due to climate change and upstream interventions. The aim of this study is to investigate the impacts of changing rainfall patterns and temperature on the river's water balance, flow regime, and drought index. Results show an annual rainfall decline of 0.15 mm, while maximum and minimum temperatures increased annually by 0.086°C and 0.066°C, respectively, according to the Mann-Kendall trend and Sen’s slope tests. Monthly rainfall generally decreased, except for slight increases in April (0.32 mm) and October (0.018 mm). July 2017 and August 2003 saw peak temperatures of 45.1°C, while January 2008 recorded a minimum of -1.8°C. The box-and-whisker plot revealed high rainfall variability in November and February. River flow dropped by 41%, mainly due to the Turkish GAP project and climate impacts. HEC-DSS software analyzed flow duration over 32 years, and Pearson’s correlation showed low associations between flow rate and temperature (-0.36) and rainfall (0.29). The Drinc program was utilized to calculate the Standardized Drought Index, which identified that the water year 1987–1988 was very wet, while it detected severe droughts in 2014–2015 and 2021–2022. Overall, climate change and upstream dam construction have significantly reduced Euphrates River discharges, intensifying drought conditions in the region. The long-term changes in precipitation and air temperature in the study area support the observed streamflow trends. The findings of this study demonstrate that a cooperative approach to international water management between the riparian states is crucial.
Downloads
[1] de Waal, D., Khemani, S., Barone, A., & Borgomeo, E. (2023). The Economics of Water Scarcity in the Middle East and North Africa: Institutional Solutions. World Bank Group, Washington, United States. doi:10.1596/978-1-4648-1739-7.
[2] UN ESCWA. (2019). Moving towards water security in the Arab region. United Nations Economic and Social Commission for Western Asia, Beirut, Lebanon. Available online: https://www.unescwa.org/publications/moving-towards-water-security-arab-region (accessed on July 2025).
[3] Wehrey, F., Dargin, J., Mehdi, Z., Muasher, M., Yahya, M., Kayssi, I., ... & Yabi, G. (2023). Climate Change and Vulnerability in the Middle East: A Call for Inclusive Reforms. Carnegie Endowment for International Peace, Washington, United States.
[4] Al-Muhyi, A., Bashar, A. L. A. J., & Kwyes, A. (2016). The study of climate change using statistical analysis case steady temperature variation in Basra. International Journal of Academic Research, 3(2), 5.
[5] Arvind, G., Ashok Kumar, P., Girish Karthi, S., & Suribabu, C. R. (2017). Statistical Analysis of 30 Years Rainfall Data: A Case Study. IOP Conference Series: Earth and Environmental Science, 80, 012067. doi:10.1088/1755-1315/80/1/012067.
[6] Zaghloul, M. S., Ghaderpour, E., Dastour, H., Farjad, B., Gupta, A., Eum, H., Achari, G., & Hassan, Q. K. (2022). Long Term Trend Analysis of River Flow and Climate in Northern Canada. Hydrology, 9(11), 197. doi:10.3390/hydrology9110197.
[7] Rao, Gr., Sowjanya, A., Shekhar, D., Naik, Bns., & Kiran, B. (2023). Rainfall analysis over 31 years of Chintapalle, Visakhapatnam, High Altitude and Tribal zone, Andhra Pradesh, India. Mausam, 74(3), 685–698. doi:10.54302/mausam.v74i3.818.
[8] Minh, H. V. T., Lien, B. T. B., Hong Ngoc, D. T., Ty, T. Van, Ngan, N. V. C., Cong, N. P., Downes, N. K., Meraj, G., & Kumar, P. (2024). Understanding Rainfall Distribution Characteristics over the Vietnamese Mekong Delta: A Comparison between Coastal and Inland Localities. Atmosphere, 15(2), 217. doi:10.3390/atmos15020217.
[9] Muhammad, Z. H., & Obead, I. H. (2024). Quantifying Meteorological Drought Severity for the Watersheds in Euphrates River Basin, Central Euphrates District, Iraq. Iraqi Geological Journal, 57(1D), 240–256. doi:10.46717/igj.57.1D.18ms-2024-4-28.
[10] Leon, L. P., & Oculi, N. (2023). Evaluating Rainfall and Temperature Trends in the Small Island Developing State of St. Lucia Using Nonparametric Statistics and Soft Computing. World Environmental and Water Resources Congress 2023, 317–327. doi:10.1061/9780784484852.031.
[11] Abubakar, K., Abaje, I. B., & Tukur, R. (2024). Rainfall and Temperature Dynamics in the Context of Climate Change in the Sudan Savanna Ecological Zone of Katsina State, Nigeria. FUDMA Journal of Earth and Environmental Sciences, 1(2), 82–98. doi:10.33003/jees.2024.0102/08.
[12] WHO. (2025) Drought. World Health Organization (WHO), Geneva, Switzerland. Available online: https://www.who.int/health-topics/drought (accessed on July 2025).
[13] IPCC. (2023). Climate Change 2021 – The Physical Science Basis. Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland. doi:10.1017/9781009157896.
[14] Wilhite, D. A., & Glantz, M. H. (2019). Understanding the drought phenomenon: The role of definitions. Planning for Drought: Toward A Reduction of Societal Vulnerability, 10(3), 11–27. doi:10.4324/9780429301735-2.
[15] UNDP. (2022). Institutional Survey & Assessment Report on Drought Early Warning System in Iraq. United Nations Development Programme, New York, United States. Available online: www.undp.org/iraq (accessed on September 2025).
[16] UNESCO. (2014). Integrated drought risk management, DRM: national framework for Iraq, an analysis report. United Nations Educational, Scientific and Cultural Organization (UNESCO), Paris, France.
[17] Shamout, M. N., & Lahn, G. (2015). The Euphrates in crisis: channels of cooperation for a threatened river. Chatham House for the Royal Institute of International Affairs, London, United Kingdom.
[18] World Bank Group. (2022). Iraq Country Climate and Development Report. World Bank, Washington, United States. doi:10.1596/38250.
[19] Nasir, H. N., & Hamdan, A. N. A. (2019). Drought Hazard Assessment in Iraq using SPI and GIS Systems. International Journal of Civil Engineering and Technology (IJCIET), 10(12), 161-173.
[20] Nedham, U. S., & Hassan, A. S. (2020). Comparison of Some Drought Indices in Iraq. Al-Mustansiriyah Journal of Science, 30(4), 1–9. doi:10.23851/mjs.v30i4.674.
[21] Tareke, K. A., & Awoke, A. G. (2022). Comparing surface water supply index and streamflow drought index for hydrological drought analysis in Ethiopia. Heliyon, 8(12), 12000. doi:10.1016/j.heliyon.2022.e12000.
[22] Dare, A., Zakka, E. J., Samson, M., Afolabi, A. O., Okechalu, S. O., & Amos, B. (2020). Drought Monitoring Using Rainfall, Evapotranspiration and Streamflow Data: A Case Study of Kaduna River Catchment Area (Nigeria). Journal of Scientific Research and Reports, 133–144. doi:10.9734/jsrr/2020/v26i830303.
[23] Al-Khafaji, M. S., & Al-Ameri, R. A. (2021). Evaluation of drought indices correlation for drought frequency analysis of the Mosul dam watershed. IOP Conference Series: Earth and Environmental Science, 779(1), 12077. doi:10.1088/1755-1315/779/1/012077.
[24] Al-Muhyi, ِa. H., Aleedani, F. Y., Albattat, M. Q., & Badr, J. M. (2024). Rainfall Repercussions: Assessing Climate Change Influence on Iraq Precipitation Patterns. Al-Kitab Journal for Pure Sciences, 8(01), 92–103. doi:10.32441/kjps.08.01.p9.
[25] Dakhil, A. J., Hussain, E. K., & Aziz, F. F. (2024). Evaluation of the Drought Situation Using Remote Sensing Technology, an Applied Study on a Part of North Wasit Governorate in Iraq. Nature Environment and Pollution Technology, 23(4), 2241–2249. doi:10.46488/nept.2024.v23i04.028.
[26] da Silva, T. L., Romani, L. A. S., Evangelista, S. R. M., Datcu, M., & Massruhá, S. M. F. S. (2025). Drought Monitoring in the Agrotechnological Districts of the Semear Digital Center. Atmosphere, 16(4), 465. doi:10.3390/atmos16040465.
[27] Mann, H. B. (1945). Nonparametric Tests Against Trend. Econometrica, 13(3), 245. doi:10.2307/1907187.
[28] Hollander, M., Wolfe, D. A., & Chicken, E. (2013). Nonparametric statistical methods. John Wiley & Sons, Hoboken, United States.
[29] Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. John Wiley & Sons, Hoboken, United States.
[30] Helsel, D. R., & Hirsch, R. M. (1993). Statistical methods in water resources. Elsevier, Amsterdam, Netherlands. doi:10.3133/tm4a3.
[31] Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379. doi:10.2307/2285891.
[32] Nalbantis, I., & Tsakiris, G. (2008). Assessment of Hydrological Drought Revisited. Water Resources Management, 23(5), 881–897. doi:10.1007/s11269-008-9305-1.
[33] Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley, Boston, United States.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.