Optimizing Waste Foundry Sand in Concrete Considering Strength Properties for Sustainable Green Structures
Downloads
Incorporating waste foundry sand (WFS) into concrete is a sustainable approach to enhance green construction practices. Waste foundry sand is a byproduct of the metal casting industry and is often discarded in landfills, posing environmental concerns. Using it as a partial replacement for natural sand in concrete addresses both waste management and resource conservation. In this research paper, advanced machine learning models have been reported on the soft computing of the optimal waste foundry sand in concrete based on strength properties for sustainable green structures. The machine learning techniques such as “Group Methods Data Handling Neural Network (GMDH-NN)”, “Support Vector Machine (SVM)”, “K-Nearest Neighbors (KNN)”, “Tree Decision (Tree)” and “Random Forest (RF)” were applied on a database for the compressive strength containing 397 records, for elastic modulus containing 146 records, and for split tensile strength containing 242 records. Each record contains C-Cement content (kg/m³), WFS-Waste foundry sand content (kg/m³), W-Water content (kg/m³), SP-Super-plasticizer content (kg/m³), CA-Coarse aggregates content (kg/m³), FA-Fine aggregates content (kg/m³), TA-Total aggregates content (kg/m³), and Age-The concrete age at testing (days), considered as the input parameters and CS_WFS-Compressive strength of waste foundry sand concrete (MPa), E_WFS-Elastic modules of waste foundry sand concrete (GPa), and STS_WFS-Split tensile strength of waste foundry sand concrete (MPa), which are the output parameters. A 75/25 partitioning pattern for train/test of the database was used in line with established rules. At the end of the model operation, it can be observed that kNN, SVM, and RF were paramount in terms of performance and therefore outclassed the other models in the three-state strength condition of the WFS cement concrete. Hence, these were selected as the decisive models for the prediction of the compressive strength, elastic modulus, and splitting tensile strength of the WFS cement's concrete. The sensitivity analyses showed that Age, WFS/C and CA/C are more impactful on the compressive strength, Age, FA/TA, and W/C are more impactful on the elastic modulus; and 1000SP/C, WFS/C, and W/C are more impactful on the splitting tensile strength of the WFS cement concrete. Generally, these models provide a foundation for optimizing material use, ensuring quality, and meeting environmental goals. Industries leveraging these tools can produce eco-friendly, high-performance concrete while addressing waste management challenges and reducing their carbon footprint.
Downloads
[1] Ahmadi, A. A., Arabbeiki, M., Ali, H. M., Goodarzi, M., & Safaei, M. R. (2020). Configuration and optimization of a minichannel using water–alumina nanofluid by non-dominated sorting genetic algorithm and response surface method. Nanomaterials, 10(5), 901. doi:10.3390/nano10050901.
[2] Chen, W., Jin, R., Xu, Y., Wanatowski, D., Li, B., Yan, L., Pan, Z., & Yang, Y. (2019). Adopting recycled aggregates as sustainable construction materials: A review of the scientific literature. Construction and Building Materials, 218, 483–496. doi:10.1016/j.conbuildmat.2019.05.130.
[3] Kurt, Z., Yilmaz, Y., Cakmak, T., & Ustabaş, I. (2023). A novel framework for strength prediction of geopolymer mortar: Renovative precursor effect. Journal of Building Engineering, 76, 107041. doi:10.1016/j.jobe.2023.107041.
[4] Lee, C. Y., Shon, J. G., & Park, J. S. (2022). An edge detection–based eGAN model for connectivity in ambient intelligence environments. Journal of Ambient Intelligence and Humanized Computing, 13(10), 4591–4600. doi:10.1007/s12652-021-03261-2.
[5] Raut, S. P., Ralegaonkar, R. V., & Mandavgane, S. A. (2011). Development of sustainable construction material using industrial and agricultural solid waste: A review of waste-create bricks. Construction and Building Materials, 25(10), 4037–4042. doi:10.1016/j.conbuildmat.2011.04.038.
[6] Khan, M. I., & Siddique, R. (2011). Utilization of silica fume in concrete: Review of durability properties. Resources, Conservation and Recycling, 57, 30–35. doi:10.1016/j.resconrec.2011.09.016.
[7] Hemalatha, T., & Ramaswamy, A. (2017). A review on fly ash characteristics – Towards promoting high volume utilization in developing sustainable concrete. Journal of Cleaner Production, 147, 546–559. doi:10.1016/j.jclepro.2017.01.114.
[8] Behnood, A., Behnood, V., Modiri Gharehveran, M., & Alyamac, K. E. (2017). Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm. Construction and Building Materials, 142, 199–207. doi:10.1016/j.conbuildmat.2017.03.061.
[9] Thomas, B. S. (2018). Green concrete partially comprised of rice husk ash as a supplementary cementitious material – A comprehensive review. Renewable and Sustainable Energy Reviews, 82, 3913–3923. doi:10.1016/j.rser.2017.10.081.
[10] Özbay, E., Erdemir, M., & Durmuş, H. I. (2016). Utilization and efficiency of ground granulated blast furnace slag on concrete properties - A review. Construction and Building Materials, 105, 423–434. doi:10.1016/j.conbuildmat.2015.12.153.
[11] Javed, M. F., Khan, M., Fawad, M., Alabduljabbar, H., Najeh, T., & Gamil, Y. (2024). Comparative analysis of various machine-learning algorithms to predict strength properties of sustainable green concrete containing waste foundry sand. Scientific Reports, 14(1), 14617. doi:10.1038/s41598-024-65255-2.
[12] Shah, M. I., Amin, M. N., Khan, K., Niazi, M. S. K., Aslam, F., Alyousef, R., Javed, M. F., & Mosavi, A. (2021). Performance evaluation of soft computing for modeling the strength properties of waste substitute green concrete. Sustainability (Switzerland), 13(5), 1–21. doi:10.3390/su13052867.
[13] Behnood, A., & Mohammadi Golafshani, E. (2021). Predicting the dynamic modulus of asphalt mixture using machine-learning techniques: An application of multi biogeography-based programming. Construction and Building Materials, 266, 120983. doi:10.1016/j.conbuildmat.2020.120983.
[14] Iqbal, M. F., Javed, M. F., Rauf, M., Azim, I., Ashraf, M., Yang, J., & Liu, Q. feng. (2021). Sustainable utilization of foundry waste: Forecasting mechanical properties of foundry sand based concrete using multi-expression programming. Science of the Total Environment, 780, 146524. doi:10.1016/j.scitotenv.2021.146524.
[15] Ghanizadeh, A. R., Tavana Amlashi, A., & Dessouky, S. (2023). A novel hybrid adaptive boosting approach for evaluating properties of sustainable materials: A case of concrete containing waste foundry sand. Journal of Building Engineering, 72, 106595. doi:10.1016/j.jobe.2023.106595.
[16] Ali, M., Khan, M. I., Masood, F., Alsulami, B. T., Bouallegue, B., Nawaz, R., & Fediuk, R. (2022). Central composite design application in the optimization of the effect of waste foundry sand on concrete properties using RSM. Structures, 46, 1581–1594. doi:10.1016/j.istruc.2022.11.013.
[17] Lahoti, M., Narang, P., Tan, K. H., & Yang, E. H. (2017). Mix design factors and strength prediction of metakaolin-based geopolymer. Ceramics International, 43(14), 11433–11441. doi:10.1016/j.ceramint.2017.06.006.
[18] Alyousef, R., Nassar, R. U. D., Khan, M., Arif, K., Fawad, M., Hassan, A. M., & Ghamry, N. A. (2023). Forecasting the strength characteristics of concrete incorporating waste foundry sand using advance machine algorithms including deep learning. Case Studies in Construction Materials, 19, 2459. doi:10.1016/j.cscm.2023.e02459.
[19] Musolf, A. M., Holzinger, E. R., Malley, J. D., & Bailey-Wilson, J. E. (2022). What makes a good prediction? Feature importance and beginning to open the black box of machine learning in genetics. Human Genetics, 141(9), 1515–1528. doi:10.1007/s00439-021-02402-z.
[20] Ulloa, N., Zumba Novay, E. G., Albuja, M., & Mayorga, D. (2025). Modeling the Compressive Strength of Metakaolin-Based Self-Healing Geopolymer Concrete Using Machine Learning Models. Civil Engineering Journal (Iran), 11(4), 1596–1623. doi:10.28991/CEJ-2025-011-04-020.
[21] Saridemir, M. (2009). Prediction of compressive strength of concretes containing metakaolin and silica fume by artificial neural networks. Advances in Engineering Software, 40(5), 350–355. doi:10.1016/j.advengsoft.2008.05.002.
[22] Sharifi, Y., & Hosseinpour, M. (2020). A predictive model based ann for compressive strength assessment of the mortars containing metakaolin. Journal of Soft Computing in Civil Engineering, 4(2), 1–12. doi:10.22115/SCCE.2020.214444.1157.
[23] Zou, Z. M., Chang, D. H., Liu, H., & Xiao, Y. D. (2021). Current updates in machine learning in the prediction of therapeutic outcome of hepatocellular carcinoma: what should we know? Insights into Imaging, 12(1), 31. doi:10.1186/s13244-021-00977-9.
[24] Ebid, A. E., Deifalla, A. F., & Onyelowe, K. C. (2024). Data Utilization and Partitioning for Machine Learning Applications in Civil Engineering. Sustainable Civil Infrastructures, 87–100. doi:10.1007/978-3-031-70992-0_8.
[25] Hoffman, F. O., & Gardner, R. H. (1983). Evaluation of uncertainties in environmental radiological assessment models. Radiological assessments: a textbook on environmental dose assessment. U.S. Nuclear Regulatory Commission, Report No. NUREG/CR-3332.
[26] Onyelowe, K. C., Kontoni, D. P. N., Ebid, A. M., Dabbaghi, F., Soleymani, A., Jahangir, H., & Nehdi, M. L. (2022). Multi-Objective Optimization of Sustainable Concrete Containing Fly Ash Based on Environmental and Mechanical Considerations. Buildings, 12(7), 948. doi:10.3390/buildings12070948.
[27] Onyelowe, K. C., Ebid, A. M., Riofrio, A., Soleymani, A., Baykara, H., Kontoni, D. P. N., Mahdi, H. A., & Jahangir, H. (2022). Global warming potential-based life cycle assessment and optimization of the compressive strength of fly ash-silica fume concrete; environmental impact consideration. Frontiers in Built Environment, 8, 992552. doi:10.3389/fbuil.2022.992552.
[28] Abdalla, A., & Mohammed, A. S. (2022). Hybrid MARS-, MEP-, and ANN-based prediction for modeling the compressive strength of cement mortar with various sand size and clay mineral metakaolin content. Archives of Civil and Mechanical Engineering, 22(4), 194. doi:10.1007/s43452-022-00519-0.
[29] Ulloa, N., Morales León, M. A., Silva Palmay, L. F., & Mendoza Castillo, M. (2025). Evaluating the compressive strength of industrial wastes-based geopolymer concrete with machine learning models. Construction and Building Materials, 472, 2025. doi:10.1016/j.conbuildmat.2025.140891.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.