Improving the Performance of Shallow Footing Subjected to Uplift Loading Using Structural Skirt
Downloads
The increasing demand for internet and phone services had required the construction of transmission towers in various terrains, including loose sand, which was often found in desert areas and exposed to wind loads that can pull out these towers. This study aims to improve the uplift resistance of shallow footings subjected to pure uplift forces. In this research, a loading system with a data logger, a shallow footing model, and skirts with different shapes, lengths, and inclination angles was used. The performance and behavior of unskirted footing resting on loose sand with 30% relative density were analyzed and compared with skirted footing under uplift loads. The results showed that increasing the L/B (where L is the footing length and B is the footing width) up to 2 and the inclination angles up to 45° of the skirt gave a significant increase in uplift resistance for skirts with straight corners by 26 times and 19 times for chamfered corners, compared with unskirted footing. It is noted that increasing L/B has less effect than increasing inclination angles by recording 6 times with L=2B and 0°. Skirt footing with straight corners demonstrates better performance than chamfered corners.
Downloads
[1] Al-Mosawe, M. J., Al-Saidi, A. A., & Jawad, F. W. (2008). Improvement of Soil Using Geogrids to Resist Eccentric Loads. Journal of Engineering, 14(04), 3198–3208. doi:10.31026/j.eng.2008.04.25.
[2] Al-Mosawe, M. J., Al-Saidi, A. A., & Jawad, F. W. (2010). Bearing Capacity of Square Footing on Geogrid-Reinforced Loose Sand to Resist Eccentric Load. Journal of Engineering, 16(02), 4990–4999. doi:10.31026/j.eng.2010.02.17.
[3] Al-Mosawe, M. J., Al- Saidi, A. A., & Jawad, F. W. (2009). Comparison Between Analytical Solution and Experimental Results for Reinforced Loose Sand. 6th Engineering Conference, 5-7 April, 2009, College of Engineering, University of Baghdad, Baghdad, Iraq.
[4] Sarsam, S. I., Al- Saidi, A. A., & Al – Khayat, B. H. (2011). Implementation of Gypseous Soil-Asphalt Stabilization Technique for Base Course Construction. Journal of Engineering, 17(05), 1066–1076. doi:10.31026/j.eng.2011.05.03.
[5] Sasam, S. I., Alsaidi, A. A., & Mukhlef, O. J. (2023). Behavior of Reinforced Gypseous Soil Embankment Model under Cyclic Loading. Journal of Engineering, 19(07), 830–844. doi:10.31026/j.eng.2013.07.05.
[6] Ameer, H., & Al-Saidi, A. A. H. (2022). The Optimum Reinforcement Layer Number for Soil under the Ring Footing Subjected to Inclined Load. Journal of Engineering, 28(12), 18–33. doi:10.31026/j.eng.2022.12.02.
[7] Al-Saidi, A. A., Al-Juari, K. A. K., & Fattah, M. Y. (2022). Reducing settlement of soft clay using different grouting materials. Journal of the Mechanical Behavior of Materials, 31(1), 240–247. doi:10.1515/jmbm-2022-0033.
[8] Ali, J. Y. M., & Al-Saidi, A. A. H. (2023). Optimum Reinforcement Depth Ratio for Sandy Soil Enhancement to Support Ring Footing Subjected to a Combination of Inclined-Eccentric Load. Journal of Engineering, 29(11), 95–108. doi:10.31026/j.eng.2023.11.06.
[9] Abd-Alhameed, H. J., & Al-Busoda, B. S. (2023). Experimental Study on the Behavior of Square-Skirted Foundation Rested on Gypseous soil Under Inclined Load. Journal of Engineering, 29(3), 27–39. doi:10.31026/j.eng.2023.03.03.
[10] Alhalbusi, G. S., & Al-Saidi, A. A. H. (2024). Enhancing the Ability of the Square Footing to Resist Positive and Negative Eccentric-inclined Loading Using an Inclined Skirt. Journal of Engineering, 30(05), 186–204. doi:10.31026/j.eng.2024.05.12.
[11] Neely, W. J., Stuart, J. G., & Graham, J. (1973). Failure Loads of Vertical Anchor Plates in Sand. Journal of the Soil Mechanics and Foundations Division, 99(SM9), 669–685. doi:10.1061/jsfeaq.0001925.
[12] StlfWe, O. J., Bysveen, S., & Christophersen, H. P. (1992). New Foundation Systems for the Snorre Development. Offshore Technology Conference, OTC-6882-MS. doi:10.4043/6882-ms.
[13] Tjelta, T. I., & Haaland, G. (1993). Novel Foundation Concept for a Jacket Finding Its Place. Offshore Site Investigation and Foundation Behaviour, Soc. for Underwater Technology, 28, 717–728. doi:10.1007/978-94-017-2473-9_34.
[14] Kelly, R. B., Byrne, B. W., Houlsby, G. T., & Martin, C. M. (2004). Tensile loading of model caisson foundations for structures on sand. ISOPE International Ocean and Polar Engineering Conference, 23-28 May, 2004, Toulon, France.
[15] Andersen, K. H., Murff, J. D., Randolph, M. F., Clukey, E. C., Erbrich, C. T., Jostad, H. P., ... & Supachawarote, C. (2005). Suction anchors for deepwater applications. Proceedings of the 1st international symposium on frontiers in offshore geotechnics, ISFOG, 19-21 September, 2005, Perth, Australia.
[16] Merifield, R. S., & Sloan, S. W. (2006). The ultimate pullout capacity of anchors in frictional soils. Canadian Geotechnical Journal, 43(8), 852–868. doi:10.1139/T06-052.
[17] Senders, M. (2009). Suction caissons in sand as tripod foundations for offshore wind turbines. Ph.D. Thesis, University of Western Australia, Perth, Australia.
[18] Zhou, X. X., Chow, Y. K., & Leung, C. F. (2008). Numerical modeling of breakout process of objects lying on the seabed surface. Computers and Geotechnics, 35(5), 686–702. doi:10.1016/j.compgeo.2007.11.004.
[19] Ahmadi, M., & Ghazavi, M. (2012). Effect of Skirt Geometry Variation on Uplift Capacity of Skirted Foundation. In ISOPE International Ocean and Polar Engineering Conference, 17-22 June, 2012, Rhodes, Greece.
[20] Singh, R. P., Dubey, C. S., Singh, S. K., Shukla, D. P., Mishra, B. K., Tajbakhsh, M., Ningthoujam, P. S., Sharma, M., & Singh, N. (2013). A new slope mass rating in mountainous terrain, Jammu and Kashmir Himalayas: Application of geophysical technique in slope stability studies. Landslides, 10(3), 255–265. doi:10.1007/s10346-012-0323-y.
[21] Chatterjee, S., Mana, D. S. K., Gourvenec, S., & Randolph, M. F. (2014). Large-Deformation Numerical Modeling of Short-Term Compression and Uplift Capacity of Offshore Shallow Foundations. Journal of Geotechnical and Geoenvironmental Engineering, 140(3). doi:10.1061/(asce)gt.1943-5606.0001043.
[22] Li, X., Gaudin, C., Tian, Y., & Cassidy, M. J. (2015). Effects of preloading and consolidation on the uplift capacity of skirted foundations. Géotechnique, 65(12), 1010–1022. doi:10.1680/jgeot.15.p.026.
[23] Landlin, G., & Chezhiyan, S. (2017). Behaviour of skirt foundation on loose sea sand with pullout loading under dry and submerged conditions. International Journal of Civil Engineering and Technology, 8(4), 1897–1904.
[24] Wang, X., Zeng, X., & Li, J. (2019). Vertical performance of suction bucket foundation for offshore wind turbines in sand. Ocean Engineering, 180, 40–48. doi:10.1016/j.oceaneng.2019.03.049.
[25] Xie, L., Ma, S., & Lin, T. (2020). The seepage and soil plug formation in suction caissons in sand using visual tests. Applied Sciences (Switzerland), 10(2), 566. doi:10.3390/app10020566.
[26] Kulczykowski, M. (2020). Experimental Investigation of Skirted Foundation in Sand Subjected to Rapid Uplift. Archives of Hydro-Engineering and Environmental Mechanics, 67(1–4), 17–34. doi:10.1515/heem-2020-0002.
[27] Ahmed, B. A., Saleh, H. M., Jameel, M. M., & Al-Taie, A. (2024). Evaluation of Skirt-Raft Foundation Performance Adjacent to Unsupported Excavations. Civil Engineering Journal (Iran), 10(12), 4083–4103. doi:10.28991/CEJ-2024-010-12-018.
[28] Ahmed, B. A., Saleh, H. M., Jameel, M. M., & Al-Taie, A. (2024). Increasing the Performance of Ring Foundation to Lateral Loads by using a Skirt Foundation. Engineering, Technology & Applied Science Research, 14(6), 17629–17635. doi:10.48084/etasr.8617.
[29] Al Dabi, S. K., & Albusoda, B. S. (2024). Loosely Skirted Circular Foundation under Different Loading Conditions: Performance, Mechanism, and Limitations. Engineering, Technology & Applied Science Research, 14(5), 17464–17471. doi:10.48084/etasr.8421.
[30] Salah Alhalbusi, G., & Al-Saidi, A. A. H. (2023). Enhancing the ability of the square footing to resist positive and negative eccentric-inclined loading using an inclined skirt. E3S Web of Conferences, 427, 01020. doi:10.1051/e3sconf/202342701020.
[31] Afaj, H. A. H., Mohammed, H. A., Jassim, N. W., Fattah, M. Y., & Al-Hassnawi, N. S. (2025). Finite Element Analysis of Skirted Strip Footing Resting on Cohesive Slopes. Journal of Engineering and Sustainable Development, 29(1), 47–56. doi:10.31272/jeasd.2832.
[32] ASTM D854-23. (2023). Standard Test Methods for Specific Gravity of Soil Solids by the Water Displacement Method. ASTM International, Pennsylvania, United States. doi:10.1520/D0854-23.
[33] ASTM D422-63(2007). (2014). Standard Test Method for Particle-Size Analysis of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D0422-63R07.
[34] ASTM D4253-00. (2021). Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table. ASTM International, Pennsylvania, United States. doi:10.1520/D4253-00.
[35] ASTM D4254-00. (2017). Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density. ASTM International, Pennsylvania, United States. doi:10.1520/D4254-00.
[36] ASTM D2049-36. (2015). Test Method for Relative Density of Cohesionless Soils. ASTM International, Pennsylvania, United States.
[37] ASTM D3080/D3080M-23. (2023). Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. ASTM International, Pennsylvania, United States. doi:10.1520/D3080_D3080M-23.
[38] ASTM D2487-17. (2020). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-17.
[39] Turner, J. P., & Kulhawy, F. H. (1987). Experimental analysis of drilled shaft foundations subjected to repeated axial loads under drained conditions. Final report No. EPRI-EL-5325. Cornell Univ., Ithaca, United States. Geotechnical Engineering Group; Electric Power Research Inst., Palo Alto, United States.
[40] Chae, D., Cho, W., & Na, H. Y. (2012). Uplift capacity of belled pile in weathered sandstones. International Journal of Offshore and Polar Engineering, 22(4), 297–305.
[41] Liu, B., Li, H., & Liu, S. (2020). Influencing factors of load carrying capacity and cooperative work laws of metro uplift piles. SDHM Structural Durability & Health Monitoring, 14(3), 249–264. doi:10.32604/SDHM.2020.06482.
[42] Kang, J., & Kang, G. (2022). Experimental and Semitheoretical Analyses of Uplift Capacity of Belled Pile in Sand. International Journal of Geomechanics, 22(12), 4022217. doi:10.1061/(asce)gm.1943-5622.0002511.
[43] Dickin, E. A., & Leung, C. F. (1992). The influence of foundation geometry on the uplift behaviour of piles with enlarged bases. Canadian Geotechnical Journal, 29(3), 498–505. doi:10.1139/t92-054.
[44] Honda, T., Hirai, Y., & Sato, E. (2011). Uplift capacity of belled and multi-belled piles in dense sand. Soils and Foundations, 51(3), 483–496. doi:10.3208/sandf.51.483.
[45] Gao, G., Gao, M., Chen, Q., & Yang, J. (2019). Field Load Testing Study of Vertical Bearing Behavior of a Large Diameter Belled Cast-in-Place Pile. KSCE Journal of Civil Engineering, 23(5), 2009–2016. doi:10.1007/s12205-019-2065-z.
[46] Abbas, H. O. (2021). Compressive Capacity of Conventional and Under Reamed Piles in Soft Clay. IOP Conference Series: Materials Science and Engineering, 1076(1), 012094. doi:10.1088/1757-899x/1076/1/012094.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.