Evaluation of Using Slag Powder as a Filler for Asphalt Concrete
Downloads
Filler materials have a significant effect on the performance of asphalt concrete by filling the voids and modifying the binder viscosity. Many types of filler have been used; the Ordinary Portland Cement (OPC) is the most used due to its properties, which align with the required properties. The cost, production emissions, and drain for natural resources formed negative points of its usage. Accordingly, this study is dedicated to evaluating the asphalt concrete properties using byproduct material as a mineral filler. The Electric Arc Furnace Slag Powder (EAFSP) has been selected to replace the OPC with ratios from zero to 100% with an increment of 25%. Marshall and Indirect Tensile Strength (ITS) results in different testing conditions were employed to evaluate the use of EAFSP. The results revealed that using EAFSP as a filler material improved asphalt concrete strength and resistance to moisture effects, especially at high temperatures. More binder content was needed, about 0.6%, the voids in the total mix were reduced by about 1%, and the stiffness increased by about 0.5 kn/mm when replacing the OPC with EAFSP. Based on that, it's recommended that the replacement ratio should be proposed according to the weather condition, materials availability, and cost-benefit analysis.
Downloads
[1] Yu, H., Zhu, Z., Leng, Z., Wu, C., Zhang, Z., Wang, D., & Oeser, M. (2020). Effect of mixing sequence on asphalt mixtures containing waste tire rubber and warm mix surfactants. Journal of Cleaner Production, 246. doi:10.1016/j.jclepro.2019.119008.
[2] Li, D., Leng, Z., Zou, F., & Yu, H. (2021). Effects of rubber absorption on the aging resistance of hot and warm asphalt rubber binders prepared with waste tire rubber. Journal of Cleaner Production, 303. doi:10.1016/j.jclepro.2021.127082.
[3] Li, R., Leng, Z., Yang, J., Lu, G., Huang, M., Lan, J., Zhang, H., Bai, Y., & Dong, Z. (2021). Innovative application of waste polyethylene terephthalate (PET) derived additive as an antistripping agent for asphalt mixture: Experimental investigation and molecular dynamics simulation. Fuel, 300. doi:10.1016/j.fuel.2021.121015.
[4] Xu, X., Leng, Z., Lan, J., Wang, W., Yu, J., Bai, Y., Sreeram, A., & Hu, J. (2021). Sustainable Practice in Pavement Engineering through Value-Added Collective Recycling of Waste Plastic and Waste Tyre Rubber. Engineering, 7(6), 857–867. doi:10.1016/j.eng.2020.08.020.
[5] Qasim, G. J., Hussein, Z. M., & Banyhussan, Q. S. (2020). Evaluating the mechanical performance of hot asphalt mixtures modified with metakaolin as filler. Periodicals of Engineering and Natural Sciences, 8(1), 113–124.
[6] Etxeberria, M., Vázquez, E., Marí, A., & Barra, M. (2007). Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cement and Concrete Research, 37(5), 735–742. doi:10.1016/j.cemconres.2007.02.002.
[7] Wu, S., Zhong, J., Zhu, J., & Wang, D. (2013). Influence of demolition waste used as recycled aggregate on performance of asphalt mixture. Road Materials and Pavement Design, 14(3), 679–688. doi:10.1080/14680629.2013.779304.
[8] Hussein, Z. M., Tayh, S. A., & Jasim, A. F. (2025). Assessing the Influence of Brick Powder as Filler in Asphalt Hot Mixes. Engineering, Technology & Applied Science Research, 15(1), 19159–19166. doi:10.48084/etasr.9190.
[9] Kumar, H., & Varma, S. (2021). A review on utilization of steel slag in hot mix asphalt. International Journal of Pavement Research and Technology, 14(2), 232–242. doi:10.1007/s42947-020-0025-0.
[10] Fares, A. I., Sohel, K. M. A., Al-Jabri, K., & Al-Mamun, A. (2021). Characteristics of ferrochrome slag aggregate and its uses as a green material in concrete – A review. Construction and Building Materials, 294. doi:10.1016/j.conbuildmat.2021.123552.
[11] Xuan, D., Houben, L. J. M., Molenaar, A. A. A., & Shui, Z. H. (2012). Investigation of combined effect of mixture variables on mechanical properties of cement treated demolition waste. Engineering Journal, 16(4), 107–116. doi:10.4186/ej.2012.16.4.107.
[12] Anderson, D. A., Christensen, D. W., & Bahia, H. (1991). Physical properties of asphalt cement and the development of performance-related specifications. Journal of the Association of Asphalt Paving Technologists, 60.
[13] Harvey, J. T., Deacon, J. A., Tsai, B. W., & Monismith, C. L. (1995). Fatigue performance of asphalt concrete mixes and its relationship to asphalt concrete pavement performance in California. University of California Pavement Research Center, University of California, Oakland, United States.
[14] National Academies of Sciences, Engineering, and Medicine. (2011). Test Methods and Specification Criteria for Mineral Filler Used in Hot-Mix Asphalt. The National Academies Press: Washington, Washington, United States.
[15] Zulkati, A., Diew, W. Y., & Delai, D. S. (2012). Effects of fillers on properties of asphalt-concrete mixture. Journal of Transportation Engineering, 138(7), 902–910. doi:10.1061/(ASCE)TE.1943-5436.0000395.
[16] Pell, P. S. (1967). Fatigue of asphalt pavement mixes. Proceedings on the International Conference on the Structural Design of Asphalt Pavements. International Conference on the Structural Design of Asphalt Pavements, 00210670.
[17] Behiry, A. E. A. E. M. (2012). Fatigue and rutting lives in flexible pavement. Ain Shams Engineering Journal, 3(4), 367–374. doi:10.1016/j.asej.2012.04.008.
[18] Choudhary, J., Kumar, B., & Gupta, A. (2020). Utilization of solid waste materials as alternative fillers in asphalt mixes: A review. Construction and Building Materials, 234. doi:10.1016/j.conbuildmat.2019.117271.
[19] Mohammad Harun-Or-Rashid, G., & Mohayminul Islam, M. (2020). A Review Paper on: Effect of Different Types of Filler Materials on Marshall Characteristics of Bitumen Hot Mix. International Journal of Materials Science and Applications, 9(3), 40. doi:10.11648/j.ijmsa.20200903.11.
[20] Abd Tayh, S., & Raheem Jabr, A. (2011). The Effect of Filler Type on the Hot Mix Asphalt Behavior. Engineering and Technology Journal, 29(9), 1701–1720. doi:10.30684/etj.29.9.7.
[21] Sutradhar, D., Miah, M., Chowdhury, G. J., & Sobhan, M. A. (2015). Effect of using waste material as filler in bituminous mix design. American Journal of Civil Engineering, 3(3), 88-94. doi:10.11648/j.ajce.20150303.16.
[22] Ashok Varma, V., & Lakshmayya, M. T. S. (2018). A review on different types of wastes used as fillers in bituminous mix. International Journal of Civil Engineering and Technology, 9(9), 289–300.
[23] Arribas, I., Santamaría, A., Ruiz, E., Ortega-López, V., & Manso, J. M. (2015). Electric arc furnace slag and its use in hydraulic concrete. Construction and Building Materials, 90, 68–79. doi:10.1016/j.conbuildmat.2015.05.003.
[24] Autelitano, F., & Giuliani, F. (2015). Swelling behavior of electric arc furnace aggregates for unbound granular mixtures in road construction. International Journal of Pavement Research and Technology, 8(2), 103–111. doi:10.6135/ijprt.org.tw/2015.8(2).103.
[25] Kavussi, A., & Qazizadeh, M. J. (2014). Fatigue characterization of asphalt mixes containing electric arc furnace (EAF) steel slag subjected to long term aging. Construction and Building Materials, 72, 158–166. doi:10.1016/j.conbuildmat.2014.08.052.
[26] Dey, D., Srinivas, D., Panda, B., Suraneni, P., & Sitharam, T. G. (2022). Use of industrial waste materials for 3D printing of sustainable concrete: A review. Journal of Cleaner Production, 340, 130749. doi:10.1016/j.jclepro.2022.130749.
[27] Zumrawi, M. M., & Khalill, F. O. (2017). Experimental study of steel slag used as aggregate in asphalt mixture. American Journal of Construction and Building Materials, 1(1), 12-18. doi:10.11648/j.ajcbm.20170101.12.
[28] Chfat, A. H. Z., Yaacob, H., Kamaruddin, N. M., Al-Saffar, Z. H., & Jaya, R. P. (2024). Performance of Asphalt Mixtures Modified with Nano-Eggshell Powder. Civil Engineering Journal, 10(11), 3699-3720. doi:10.28991/CEJ-2024-010-11-016.
[29] Kambole, C., Paige-Green, P., Kupolati, W. K., Ndambuki, J. M., & Adeboje, A. O. (2017). Basic oxygen furnace slag for road pavements: A review of material characteristics and performance for effective utilization in southern Africa. Construction and Building Materials, 148, 618–631. doi:10.1016/j.conbuildmat.2017.05.036.
[30] Díaz, R. O. (2017). Blast furnace dust and phosphorous slag, new materials for use in road engineering. Journal of Physics: Conference Series, 935(1), 1–4. doi:10.1088/1742-6596/935/1/012003.
[31] Al-Tameemi, A. F., Al-Fayyadh, Z. T., Al-Mosawe, H., Wang, Y., & Moyet, A. A. (2025). Sustainable Asphalt Mixtures Comprising Steel Slag Filler and SBS-Modified Binder: An Experimental Investigation. Civil Engineering Journal, 11(4), 1318–1330. doi:10.28991/cej-2025-011-04-04.
[32] Yi, H., Xu, G., Cheng, H., Wang, J., Wan, Y., & Chen, H. (2012). An Overview of Utilization of Steel Slag. Procedia Environmental Sciences, 16, 791–801. doi:10.1016/j.proenv.2012.10.108.
[33] Jexembayeva, A., Salem, T., Jiao, P., Hou, B., & Niyazbekova, R. (2020). Blended cement mixed with basic oxygen steelmaking slag (BOF) as an alternative green building material. Materials, 13(14), 3062. doi:10.3390/ma13143062.
[34] Amin, M. N., Khan, K., Saleem, M. U., Khurram, N., & Niazi, M. U. K. (2017). Influence of mechanically activated electric arc furnace slag on compressive strength of mortars incorporating curing moisture and temperature effects. Sustainability (Switzerland), 9(8), 1178. doi:10.3390/su9081178.
[35] Muniandy, R., Aburkaba, E., & Taha, R. (2013). Effect of mineral filler type and particle size on the engineering properties of stone mastic asphalt pavements. Journal of Engineering Research, 10(2), 13–32. doi:10.24200/tjer.vol10iss2pp13-32.
[36] Wang, Q., Yan, P., Yang, J., & Zhang, B. (2013). Influence of steel slag on mechanical properties and durability of concrete. Construction and Building Materials, 47, 1414–1420. doi:10.1016/j.conbuildmat.2013.06.044.
[37] SCRB/R9. (2003). General Specification for Roads and Bridges. Section R/9, Hot-Mix Asphalt Concrete Pavement, Revised Edition. State Corporation of Roads and Bridges, Ministry of Housing and Construction, Republic of Iraq.
[38] ASTM C127-24. (2024). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0127-24.
[39] ASTM C131-06. (2006). Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. ASTM International, Pennsylvania, United States. doi.org/10.1520/C0131-06.
[40] ASTM C88/C88M-13. (2018). Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate. ASTM International, Pennsylvania, United States. doi:10.1520/C0088-13.
[41] ASTM_D4791-10. (2018 Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate (Withdrawn 2019). ASTM International, Pennsylvania, United States. doi:10.1520/D4791-10.
[42] ASTM_D2419-22. (2022). Standard Test Method for Sand Equivalent Value of Soils and Fine Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/D2419-22.
[43] ASTM_C128-22. (2023). Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0128-22.
[44] ASTM D5-06. (2017). Standard Test Method for Penetration of Bituminous Materials. ASTM International, Pennsylvania, United States. doi:10.1520/D0005-06.
[45] ASTM_D2171-07. (2010). Standard Test Method for Viscosity of Asphalts by Vacuum Capillary Viscometer. ASTM International, Pennsylvania, United States. doi:10.1520/D2171-07.
[46] ASTM D36/D36M-12. (2014). Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). ASTM International, Pennsylvania, United States. doi:10.1520/D0036_D0036M-12.
[47] ASTM D113/D113M-17(2023)e1. (2023). Standard Test Method for Ductility of Asphalt Materials. ASTM International, Pennsylvania, United States. doi:10.1520/D0113_D0113M-17R23E01.
[48] ASTM D70/D70M-21. (2021). Standard Test Method for Specific Gravity and Density of Semi-Solid Asphalt Binder (Pycnometer Method). ASTM International, Pennsylvania, United States. doi:10.1520/D0070_D0070M-21.
[49] ASTM D92-24. (2024). Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester. ASTM International, Pennsylvania, United States. doi:10.1520/D0092-24.
[50] ASTM D1754-97. (2017). Standard Test Method for Effect of Heat and Air on Asphaltic Materials (Thin-Film Oven Test). ASTM International, Pennsylvania, United States. doi:10.1520/D1754-97.
[51] ASTM_D6926-20 (2020). Standard Practice for Preparation of Asphalt Mixture Specimens Using Marshall Apparatus. ASTM International, Pennsylvania, United States. doi:10.1520/D6926-20.
[52] ASTM D2726/D2726M-17 (2019). Standard Test Method for Bulk Specific Gravity and Density of Non-Absorptive Compacted Asphalt Mixtures. ASTM International, Pennsylvania, United States. doi:10.1520/D2726_D2726M-17.
[53] ASTM_D6927-15 (2022). Standard Test Method for Marshall Stability and Flow of Asphalt Mixtures. ASTM International, Pennsylvania, United States. doi:1520/D6927-15.
[54] State Corporation for Roads and Bridges (SCRB). (2003) General Specification for Roads and Bridges (SORB/R9)—Hot Mix Asphaltic Concrete Pavement. Department of Planning and Studies, Ministry of Housing and Construction, Baghdad, Iraq.
[55] Aljbouri, R. Q., & Albayati, A. H. (2023). Investigating the effect of nanomaterials on the Marshall properties and durability of warm mix asphalt. Cogent Engineering, 10(2), 2269640. doi:10.1080/23311916.2023.2269640.
[56] Wang, Y. D., Ghanbari, A., Underwood, B. S., & Kim, Y. R. (2019). Development of a Performance-Volumetric Relationship for Asphalt Mixtures. Transportation Research Record, 2673(6), 416–430. doi:10.1177/0361198119845364.
[57] ASTM D6931-17. (2025). Standard Test Method for Indirect Tensile (IDT) Strength of Asphalt Mixtures. ASTM International, Pennsylvania, United States. doi:10.1520/D6931-17.
[58] ASTM D4867/D4867M-09(2014). (2022). Standard Test Method for Effect of Moisture on Asphalt Concrete Paving Mixtures. ASTM International, Pennsylvania, United States. doi:10.1520/D4867_D4867M-09R14.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.