Circularized and Corner-Rounded Rectangular Reinforced Concrete Columns Wrapped with CFRP Under Eccentric Compression
Downloads
This paper presents experimental and analytical investigations on the behavior and mechanical properties of carbon fiber reinforced polymer (CFRP) confined circularized and corner-rounded rectangular reinforced concrete (RC) columns under eccentric loading. Twelve RC columns with cross sections of 150×200 mm were tested. Two columns were used as control specimens. Five columns were circularized and then wrapped with five CFRP configurations. The other five columns were corner-rounded and then wrapped with the above configurations. These twelve columns were eccentrically loaded until they failed. The results indicated that CFRP-confined circularized RC columns failed by CFRP rupture at the eccentric side, while CFRP-confined corner-rounded RC columns failed by CFRP rupture localized at corners. The outstanding effectiveness of the circularization method was its increase in the ultimate load of CFRP-confined circularized RC columns by 3.0–4.3 times that of the control columns. In contrast, the corner-rounding method moderately increased the ultimate load of CFRP-confined corner-rounded RC columns by 1.3–1.7 times that of the control columns. The circularization method outstandingly improved the elastic stiffness by 273.9%–419.3% compared with that of control columns, whereas the corner-rounding method exhibited no effect on the elastic stiffness. The rotation ductility of CFRP-confined circularized and corner-rounded RC columns significantly improved to high ductility when confined with more than 1.33 CFRP layers. Theoretical analyses were performed, and simple models were proposed for reasonably estimating the ultimate loads of the CFRP-confined circularized and corner-rounded RC columns under eccentric loading.
Downloads
[1] Reda, R. M., Sharaky, I. A., Ghanem, M., Seleem, M. H., & Sallam, H. E. M. (2016). Flexural behavior of RC beams strengthened by NSM GFRP Bars having different end conditions. Composite Structures, 147(Supplement C), 131–142. doi:10.1016/j.compstruct.2016.03.018.
[2] Haddad, R. H., & Harb, A. N. (2022). Varying Profiles of CFRP Ropes for Strengthening Concrete Beams. International Journal of Civil Engineering, 20(4), 405–419. doi:10.1007/s40999-021-00664-2.
[3] Van Cao, V. (2024). Performance of NSM GFRP Retrofitted Postfire RC Slabs Under Monotonic and Cyclic Loadings. Civil Engineering Journal (Iran), 10(6), 1987–2006. doi:10.28991/CEJ-2024-010-06-017.
[4] Islam, M. R., Mansur, M. A., & Maalej, M. (2005). Shear strengthening of RC deep beams using externally bonded FRP systems. Cement and Concrete Composites, 27(3), 413–420. doi:10.1016/j.cemconcomp.2004.04.002.
[5] Saadah, M., Ashteyat, A., & Murad, Y. (2021). Shear strengthening of RC beams using side near surface mounted CFRP ropes and strips. Structures, 32, 380–390. doi:10.1016/j.istruc.2021.03.038.
[6] Nanda, R. P., & Behera, B. (2020). Experimental Study of Shear-Deficient RC Beam Wrapped with GFRP. International Journal of Civil Engineering, 18(6), 655–664. doi:10.1007/s40999-020-00498-4.
[7] Mercimek, Ö., Anıl, Ö., Akkaya, S. T., Erdem, R. T., Çelik, A., Kopraman, Y., & Abukan, A. (2025). Experimental behavior of shear deficient RC beams strengthened with CFRP strips againts reversible cylic earthquake load. Structural Concrete. doi:10.1002/suco.202401066.
[8] Eslami, A., & Ronagh, H. R. (2013). Effect of FRP wrapping in seismic performance of RC buildings with and without special detailing - A case study. Composites Part B: Engineering, 45(1), 1265–1274. doi:10.1016/j.compositesb.2012.09.031.
[9] Khan, A. R., Nasir, R., & Fareed, S. (2023). Simulation of Reinforced Concrete Columns Strengthened with CFRP Wraps. International Journal of Civil Engineering, 21(2), 299–313. doi:10.1007/s40999-022-00768-3.
[10] Khaloo, A., Tabatabaeian, M., & Khaloo, H. (2020). The axial and lateral behavior of low strength concrete confined by GFRP wraps: An experimental investigation. Structures, 27, 747–766. doi:10.1016/j.istruc.2020.06.008.
[11] Norris, T., Saadatmanesh, H., & Ehsani, M. R. (1997). Shear and Flexural Strengthening of R/C Beams with Carbon Fiber Sheets. Journal of Structural Engineering, 123(7), 903–911. doi:10.1061/(asce)0733-9445(1997)123:7(903).
[12] Cao, V. V. (2025). Effects of CFRP U-Wraps on the Behavior of NSM GFRP Retrofitted Reinforced Concrete Beams. Journal of Composites for Construction, 29(1). doi:10.1061/jccof2.cceng-4884.
[13] Ahmad, H., Hameed, R., Riaz, M. R., & Gillani, A. A. (2018). Strengthening of concrete damaged by mechanical loading and elevated temperature. Advances in Concrete Construction, 6(6), 645–658. doi:10.12989/acc.2018.6.6.645.
[14] Zhao, K., Hu, Z., Wang, B., Wen, Y., Han, J., Wu, Q., & Xu, Y. (2024). Experimental investigation on axial compression behavior of heat-damaged concrete cylinders confined with CFRP sheets. Structures, 70, 107560. doi:10.1016/j.istruc.2024.107560.
[15] Limwibul, V., Jirawattanasomkul, T., Jongvivatsakul, P., Likitlersuang, S., Dai, J. G., & Ueda, T. (2024). Stress-strain behaviour of pre-damaged concrete confined with natural fibre reinforced polymer. Structures, 69, 107434. doi:10.1016/j.istruc.2024.107434.
[16] Saadatmanesh, H., Ehsani, M. R., & Jin, L. (1997). Repair of earthquake-damaged RC columns with FRP wraps. ACI Structural Journal, 94(2), 206–X. doi:10.14359/474.
[17] Lao, X., Han, X., Ji, J., & Chen, B. (2019). The compression behavior of CFRP-repaired damaged square RC columns. Construction and Building Materials, 223, 1154–1166. doi:10.1016/j.conbuildmat.2019.07.182.
[18] Ozcan, O., Binici, B., Canbay, E., & Ozcebe, G. (2010). Repair and strengthening of reinforced concrete columns with CFRPs. Journal of Reinforced Plastics and Composites, 29(22), 3411–3424. doi:10.1177/0731684410376332.
[19] Cao, V. Van, Dinh, L. H., Trinh, L. C., & Vo, H. B. (2023). Behavior of postfire RC columns retrofitted with CFRP wraps under monotonic and cyclic axial loadings: Experiments and theoretical analyses. Journal of Building Engineering, 72(106657). doi:10.1016/j.jobe.2023.106657.
[20] Nguyen, T. H., Nguyen, V. T., Pham, X. D., Nguyen, M. H., & Le, P. L. (2024). Experimental Study on the Strengthening Effect of CFRP Sheets on Corrosion-Damaged, Eccentrically Loaded Reinforced Concrete Columns. International Journal of Civil Engineering, 22(4), 535–547. doi:10.1007/s40999-023-00911-8.
[21] Mostofinejad, D., Abdoli, M., Savoj, M., & Hajrasouliha, M. (2024). Hybrid rehabilitation of 3D RC beam-column joints using UHP-HFRC and FRP wrapping: Experimental evaluation and theoretical analysis. Journal of Building Engineering, 97, 110758. doi:10.1016/j.jobe.2024.110758.
[22] Balsamo, A., Colombo, A., Manfredi, G., Negro, P., & Prota, A. (2005). Seismic behavior of a full-scale RC frame repaired using CFRP laminates. Engineering Structures, 27(5), 769–780. doi:10.1016/j.engstruct.2005.01.002.
[23] Bagheri, M., Chahkandi, A., & Jahangir, H. (2019). Seismic Reliability Analysis of RC Frames Rehabilitated by Glass Fiber-Reinforced Polymers. International Journal of Civil Engineering, 17(11), 1785–1797. doi:10.1007/s40999-019-00438-x.
[24] Van Cao, V., & Quoc Nguyen, T. (2019). Effects of CFRP/GFRP flexural retrofitting on reducing seismic damage of reinforced concrete frames: a comparative study. Asian Journal of Civil Engineering, 20(8), 1071–1087. doi:10.1007/s42107-019-00173-7.
[25] Lam, L., & Teng, J. G. (2003). Design-oriented stress-strain model for FRP-confined concrete. Construction and Building Materials, 17(6–7), 471–489. doi:10.1016/S0950-0618(03)00045-X.
[26] Lam, L., & Teng, J. G. (2003). Design-oriented stress-strain model for FRP-confined concrete in rectangular columns. Journal of Reinforced Plastics and Composites, 22(13), 1149–1186. doi:10.1177/0731684403035429.
[27] Harajli, M. H., Hantouche, E., & Soudki, K. (2006). Stress-strain model for fiber-reinforced polymer jacketed concrete columns. ACI Structural Journal, 103(5), 672–682. doi:10.14359/16919.
[28] Wu, G., Wu, Z. S., & Lü, Z. T. (2007). Design-oriented stress-strain model for concrete prisms confined with FRP composites. Construction and Building Materials, 21(5), 1107–1121. doi:10.1016/j.conbuildmat.2005.12.014.
[29] Wei, Y. Y., & Wu, Y. F. (2012). Unified stress-strain model of concrete for FRP-confined columns. Construction and Building Materials, 26(1), 381–392. doi:10.1016/j.conbuildmat.2011.06.037.
[30] Van Cao, V., & Pham, S. Q. (2019). Comparison of CFRP and GFRP Wraps on Reducing Seismic Damage of Deficient Reinforced Concrete Structures. International Journal of Civil Engineering, 17(11), 1667–1681. doi:10.1007/s40999-019-00429-y.
[31] Harajli, M. H., & Rteil, A. A. (2004). Effect of Confinement Using Fiber-Reinforced Polymer or Fiber-Reinforced Concrete on Seismic Performance of Gravity Load-Designed Columns. ACI Structural Journal, 101(1), 47–56. doi:10.14359/12997.
[32] Sheikh, S. A., & Yau, G. (2002). Seismic behavior of concrete columns confined with steel and fiber-reinforced polymers. ACI Structural Journal, 99(1), 72–80. doi:10.14359/11037.
[33] Rahai, A., & Akbarpour, H. (2014). Experimental investigation on rectangular RC columns strengthened with CFRP composites under axial load and biaxial bending. Composite Structures, 108(1), 538–546. doi:10.1016/j.compstruct.2013.09.015.
[34] Mostofinejad, D., Moshiri, N., & Mortazavi, N. (2015). Effect of corner radius and aspect ratio on compressive behavior of rectangular concrete columns confined with CFRP. Materials and Structures, 48(1–2), 107–122. doi:10.1617/s11527-013-0171-9.
[35] Wang, L. M., & Wu, Y. F. (2008). Effect of corner radius on the performance of CFRP-confined square concrete columns: Test. Engineering Structures, 30(2), 493–505. doi:10.1016/j.engstruct.2007.04.016.
[36] Yang, X., Wei, J., Nanni, A., & Dharani, L. R. (2004). Shape Effect on the Performance of Carbon Fiber Reinforced Polymer Wraps. Journal of Composites for Construction, 8(5), 444–451. doi:10.1061/(asce)1090-0268(2004)8:5(444).
[37] Zhu, J. Y., Lin, G., Teng, J.-G., Chan, T.-M., Zeng, J.-J., & Li, L.-J. (2020). FRP-Confined Square Concrete Columns with Section Curvilinearization under Axial Compression. Journal of Composites for Construction, 24(2). doi:10.1061/(asce)cc.1943-5614.0000999.
[38] Zeng, J. J., Teng, J. G., Lin, G., & Li, L. J. (2021). Large-Scale FRP-Confined Rectangular RC Columns with Section Curvilinearization under Axial Compression. Journal of Composites for Construction, 25(3), 04021020. doi:10.1061/(asce)cc.1943-5614.0001129.
[39] He, C., & Zeng, J. J. (2022). Fiber-Reinforced Polymer-Confined Non-Circular Columns with Shape Modification: A Comprehensive Review. Polymers, 14(3), 564. doi:10.3390/polym14030564.
[40] Pantelides, C., & Yan, Z. (2006). FRP Jacketed and Shape-Modified Compression Members: I–Experimental Behavior. Structural Journal, 103(6), 226-234. doi:10.14359/18243.
[41] Pantelides, C. P., & Yan, Z. (2007). Confinement model of concrete with externally bonded FRP jackets or posttensioned FRP shells. Journal of Structural Engineering, 133(9), 1288-1296. doi:10.1061/(ASCE)0733-9445(2007)133:9(1288).
[42] Yan, Z., & Pantelides, C. P. (2011). Concrete column shape modification with FRP shells and expansive cement concrete. Construction and Building Materials, 25(1), 396–405. doi:10.1016/j.conbuildmat.2010.06.013.
[43] Pham, T. M., Doan, L. V., & Hadi, M. N. S. (2013). Strengthening square reinforced concrete columns by circularisation and FRP confinement. Construction and Building Materials, 49, 490–499. doi:10.1016/j.conbuildmat.2013.08.082.
[44] Hadi, M. N. S., Pham, T. M., & Lei, X. (2013). New Method of Strengthening Reinforced Concrete Square Columns by Circularizing and Wrapping with Fiber-Reinforced Polymer or Steel Straps. Journal of Composites for Construction, 17(2), 229–238. doi:10.1061/(asce)cc.1943-5614.0000335.
[45] Zeng, J.-J., Guo, Y.-C., Gao, W.-Y., Li, J.-Z., & Xie, J.-H. (2017). Behavior of partially and fully FRP-confined circularized square columns under axial compression. Construction and Building Materials, 152, 319–332. doi:10.1016/j.conbuildmat.2017.06.152.
[46] Hadi, M. N. S., Jameel, M. T., & Sheikh, M. N. (2017). Behavior of Circularized Hollow RC Columns under Different Loading Conditions. Journal of Composites for Construction, 21(5), 04017025. doi:10.1061/(asce)cc.1943-5614.0000808.
[47] Jameel, M. T., Sheikh, M. N., & Hadi, M. N. S. (2017). Behaviour of circularized and FRP wrapped hollow concrete specimens under axial compressive load. Composite Structures, 171, 538–548. doi:10.1016/j.compstruct.2017.03.056.
[48] Mai, A. D., Sheikh, M. N., & Hadi, M. N. S. (2019). Performance evaluation of intermittently CFRP wrapped square and circularised square reinforced concrete columns under different loading conditions. Structure and Infrastructure Engineering, 15(5), 696–710. doi:10.1080/15732479.2019.1572201.
[49] Al-Tameemi, H., & Akın, E. (2022). Improving the efficiency of FRP-Confined square concrete column by rounding the sharp edges and circularizing the flat sides. Structures, 45, 1762–1773. doi:10.1016/j.istruc.2022.10.014.
[50] TCVN 7570:2006. (2006). Aggregates for concrete and mortar–Specifications. Vietnam National Standard, Hanoi, Vietnam. (In Vietnamese).
[51] Rocca, S., Galati, N., & Nanni, A. (2009). Interaction diagram methodology for design of FRP-confined reinforced concrete columns. Construction and Building Materials, 23(4), 1508–1520. doi:10.1016/j.conbuildmat.2008.06.010.
[52] ACI 440.2R-08. (2008). Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. American Concrete Institute (ACI), Michigan, United States.
[53] Park, R., & Paulay, T. (1975). Reinforced Concrete Structures. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470172834.
[54] Realfonzo, R., & Napoli, A. (2013). Confining concrete members with FRP systems: Predictive vs design strain models. Composite Structures, 104, 304–319. doi:10.1016/j.compstruct.2013.04.031.
[55] Baji, H. (2017). Calibration of the FRP Resistance Reduction Factor for FRP-Confined Reinforced Concrete Building Columns. Journal of Composites for Construction, 21(3), 04016107. doi:10.1061/(asce)cc.1943-5614.0000769.
[56] Baji, H., Ronagh, H. R., & Li, C. Q. (2016). Probabilistic Design Models for Ultimate Strength and Strain of FRP-Confined Concrete. Journal of Composites for Construction, 20(6), 04016051. doi:10.1061/(asce)cc.1943-5614.0000704.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.