Influence of Blast Furnace Slag on Concrete: Mechanical Strength and Microstructural Characterization
Downloads
This study aims to quantitatively assess the effect of granulated blast furnace slag (GGBFS) as a partial replacement for Portland cement on the mechanical and microstructural performance of concrete with a design compressive strength of 280 kg/cm². A comprehensive experimental program was conducted to evaluate compressive strength, indirect tensile strength, flexural strength, and modulus of elasticity at curing ages of 7, 14, and 28 days, in accordance with ASTM standards. Microstructural characterization included Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (SEM/EDS), and X-ray Diffraction (XRD). The results demonstrated that incorporating GGBFS, particularly at 16% and 20% replacement levels, led to significant improvements in compressive strength and stiffness at 28 days, while early-age tensile strength reductions were mitigated over time due to the latent pozzolanic activity of the slag. Microstructural analyses revealed a denser cementitious matrix, enhanced chemical stability, and the formation of new crystalline phases. Statistical analyses (ANOVA and Kruskal–Wallis) confirmed significant effects on flexural strength and elastic modulus. These findings underscore the potential of GGBFS to improve concrete performance and promote sustainability by valorizing industrial by-products and reducing CO₂ emissions. This work provides a robust experimental and analytical basis for optimizing GGBFS incorporation in durable, performance-enhanced concretes.
Downloads
[1] Marvila, M. T., de Azevedo, A. R. G., de Oliveira, L. B., de Castro Xavier, G., & Vieira, C. M. F. (2021). Mechanical, physical and durability properties of activated alkali cement based on blast furnace slag as a function of %Na2O. Case Studies in Construction Materials, 15. doi:10.1016/j.cscm.2021.e00723.
[2] López-Perales, J. F., Contreras, J. E., Vázquez-Rodríguez, F. J., Gómez-Rodríguez, C., Díaz-Tato, L., Banda-Muñoz, F., & Rodríguez, E. A. (2021). Partial replacement of a traditional raw material by blast furnace slag in developing a sustainable conventional refractory castable of improved physical-mechanical properties. Journal of Cleaner Production, 306, 127266. doi:10.1016/j.jclepro.2021.127266.
[3] da Silva, J. M., da Silva, C. E. P., Freire, J. M. A., Becker, H., Diógenes, I. C. N., & Longhinotti, E. (2022). Industrial steel waste-based adsorbent: An effective phosphate removal from aqueous media. Materials Chemistry and Physics, 292, 126828. doi:10.1016/j.matchemphys.2022.126828.
[4] Moula, S., Ben Fraj, A., Wattez, T., Bouasker, M., & Hadj Ali, N. B. (2023). Mechanical properties, carbon footprint and cost of ultra-high performance concrete containing ground granulated blast furnace slag. Journal of Building Engineering, 79, 107796. doi:10.1016/j.jobe.2023.107796.
[5] Roy, A., & Bhattacharya, T. (2022). Ecological and human health risks from pseudo-total and bio-accessible metals in street dusts. Environmental Monitoring and Assessment, 194(2), 101. doi:10.1007/s10661-021-09658-y.
[6] Palod, R., Deo, S. V., & Ramtekkar, G. D. (2020). Effect on mechanical performance, early age shrinkage and electrical resistivity of ternary blended concrete containing blast furnace slag and steel slag. Materials Today: Proceedings, 32, 917–922. doi:10.1016/j.matpr.2020.04.747.
[7] Valipour, M., Yekkalar, M., Shekarchi, M., & Panahi, S. (2014). Environmental assessment of green concrete containing natural zeolite on the global warming index in marine environments. Journal of Cleaner Production, 65, 418–423. doi:10.1016/j.jclepro.2013.07.055.
[8] Serres, N., Braymand, S., & Feugeas, F. (2016). Environmental evaluation of concrete made from recycled concrete aggregate implementing life cycle assessment. Journal of Building Engineering, 5, 24–33. doi:10.1016/j.jobe.2015.11.004.
[9] Bajpai, R., Choudhary, K., Srivastava, A., Sangwan, K. S., & Singh, M. (2020). Environmental impact assessment of fly ash and silica fume based geopolymer concrete. Journal of Cleaner Production, 254, 120147. doi:10.1016/j.jclepro.2020.120147.
[10] Munir, Q., Abdulkareem, M., Horttanainen, M., & Kärki, T. (2023). A comparative cradle-to-gate life cycle assessment of geopolymer concrete produced from industrial side streams in comparison with traditional concrete. Science of the Total Environment, 865, 161230. doi:10.1016/j.scitotenv.2022.161230.
[11] Gerges, N. N., Issa, C. A., Sleiman, E., Aintrazi, S., Saadeddine, J., Abboud, R., & Antoun, M. (2022). Eco-Friendly Optimum Structural Concrete Mix Design. Sustainability (Switzerland), 14(14), 8660. doi:10.3390/su14148660.
[12] Mohamed, A., Zhou, Y., Bertolesi, E., Liu, M., Liao, F., & Fan, M. (2023). Factors influencing self-healing mechanisms of cementitious materials: A review. Construction and Building Materials, 393, 131550. doi:10.1016/j.conbuildmat.2023.131550.
[13] Van Damme, H. (2018). Concrete material science: Past, present, and future innovations. Cement and Concrete Research, 112, 5–24. doi:10.1016/j.cemconres.2018.05.002.
[14] Schneider, M. (2019). The cement industry on the way to a low-carbon future. Cement and Concrete Research, 124(105792). doi:10.1016/j.cemconres.2019.105792.
[15] Monteiro, P. J. M., Miller, S. A., & Horvath, A. (2017). Towards sustainable concrete. Nature Materials, 16(7), 698–699. doi:10.1038/nmat4930.
[16] Flower, D. J. M., & Sanjayan, J. G. (2007). Greenhouse gas emissions due to concrete manufacture. International Journal of Life Cycle Assessment, 12(5), 282–288. doi:10.1065/lca2007.05.327.
[17] Worrell, E., Price, L., Martin, N., Hendriks, C., & Meida, L. O. (2001). Carbon dioxide emissions from the global cement industry. Annual Review of Energy and the Environment, 26, 303–329. doi:10.1146/annurev.energy.26.1.303.
[18] Malhotra, V. M. (2010). Global warming, and role of supplementary cementing materials and superplasticisers in reducing greenhouse gas emissions from the manufacturing of portland cement. International Journal of Structural Engineering, 1(2), 116–130. doi:10.1504/IJSTRUCTE.2010.031480.
[19] Oh, D. Y., Noguchi, T., Kitagaki, R., & Park, W. J. (2014). CO2 emission reduction by reuse of building material waste in the Japanese cement industry. Renewable and Sustainable Energy Reviews, 38, 796–810. doi:10.1016/j.rser.2014.07.036.
[20] Belaidi, A. S. E., Azzouz, L., Kadri, E., & Kenai, S. (2012). Effect of natural pozzolana and marble powder on the properties of self-compacting concrete. Construction and Building Materials, 31, 251–257. doi:10.1016/j.conbuildmat.2011.12.109.
[21] Tung, T. M., Babalola, O. E., & Le, D. H. (2023). Experimental investigation of the performance of ground granulated blast furnace slag blended recycled aggregate concrete exposed to elevated temperatures. Cleaner Waste Systems, 4, 100069. doi:10.1016/j.clwas.2022.100069.
[22] Sanjuán, M. Á., Estévez, E., Argiz, C., & Barrio, D. del. (2018). Effect of curing time on granulated blast-furnace slag cement mortars carbonation. Cement and Concrete Composites, 90, 257–265. doi:10.1016/j.cemconcomp.2018.04.006.
[23] Mohseni, E., Ranjbar, M. M., Yazdi, M. A., Hosseiny, S. S., & Roshandel, E. (2015). The effects of silicon dioxide, iron(III) oxide and copper oxide nanomaterials on the properties of self-compacting mortar containing fly ash. Magazine of Concrete Research, 67(20), 1112–1124. doi:10.1680/macr.15.00051.
[24] Kurad, R., Silvestre, J. D., de Brito, J., & Ahmed, H. (2017). Effect of incorporation of high volume of recycled concrete aggregates and fly ash on the strength and global warming potential of concrete. Journal of Cleaner Production, 166, 485–502. doi:10.1016/j.jclepro.2017.07.236.
[25] Dong, Q., Wang, G., Chen, X., Tan, J., & Gu, X. (2021). Recycling of steel slag aggregate in Portland cement concrete: An overview. Journal of Cleaner Production, 282, 124447. doi:10.1016/j.jclepro.2020.124447.
[26] Miller, S. A. (2018). Supplementary cementitious materials to mitigate greenhouse gas emissions from concrete: can there be too much of a good thing? Journal of Cleaner Production, 178, 587–598. doi:10.1016/j.jclepro.2018.01.008.
[27] Asadollahfardi, G., Katebi, A., Taherian, P., & Panahandeh, A. (2021). Environmental life cycle assessment of concrete with different mixed designs. International Journal of Construction Management, 21(7), 665–676. doi:10.1080/15623599.2019.1579015.
[28] Skibsted, J., & Snellings, R. (2019). Reactivity of supplementary cementitious materials (SCMs) in cement blends. Cement and Concrete Research, 124, 105799. doi:10.1016/j.cemconres.2019.105799.
[29] Thomas, M. D. A., Hooton, R. D., Scott, A., & Zibara, H. (2012). The effect of supplementary cementitious materials on chloride binding in hardened cement paste. Cement and Concrete Research, 42(1), 1–7. doi:10.1016/j.cemconres.2011.01.001.
[30] Siddique, R. (2014). Utilization (recycling) of iron and steel industry by-product (GGBS) in concrete: Strength and durability properties. Journal of Material Cycles and Waste Management, 16(3), 460–467. doi:10.1007/s10163-013-0206-x.
[31] Khatib, J. M., & Hibbert, J. J. (2005). Selected engineering properties of concrete incorporating slag and metakaolin. Construction and Building Materials, 19(6), 460–472. doi:10.1016/j.conbuildmat.2004.07.017.
[32] Yalçınkaya, Ç., & Çopuroğlu, O. (2021). Hydration heat, strength and microstructure characteristics of UHPC containing blast furnace slag. Journal of Building Engineering, 34. doi:10.1016/j.jobe.2020.101915.
[33] Sim, S., Rhee, J. H., Oh, J. E., & Kim, G. (2023). Enhancing the durability performance of thermally damaged concrete with ground-granulated blast furnace slag and fly ash. Construction and Building Materials, 407, 133538. doi:10.1016/j.conbuildmat.2023.133538.
[34] Ganesh, P., & Murthy, A. R. (2019). Tensile behaviour and durability aspects of sustainable ultra-high performance concrete incorporated with GGBS as cementitious material. Construction and Building Materials, 197, 667–680. doi:10.1016/j.conbuildmat.2018.11.240.
[35] Li, Y., Liu, Y., Gong, X., Nie, Z., Cui, S., Wang, Z., & Chen, W. (2016). Environmental impact analysis of blast furnace slag applied to ordinary Portland cement production. Journal of Cleaner Production, 120, 221–230. doi:10.1016/j.jclepro.2015.12.071.
[36] Juenger, M. C. G., Winnefeld, F., Provis, J. L., & Ideker, J. H. (2011). Advances in alternative cementitious binders. Cement and Concrete Research, 41(12), 1232–1243. doi:10.1016/j.cemconres.2010.11.012.
[37] Aydin, S., & Baradan, B. (2014). Effect of activator type and content on properties of alkali-activated slag mortars. Composites Part B: Engineering, 57, 166–172. doi:10.1016/j.compositesb.2013.10.001.
[38] Ahmad, J., Kontoleon, K. J., Majdi, A., Naqash, M. T., Deifalla, A. F., Ben Kahla, N., Isleem, H. F., & Qaidi, S. M. A. (2022). A Comprehensive Review on the Ground Granulated Blast Furnace Slag (GGBS) in Concrete Production. Sustainability (Switzerland), 14(14), 8783. doi:10.3390/su14148783.
[39] Dyavappanavar, S. P., Kulkarni, D. K., Channagoudar, S., Wali, S., Vijapur, G., Patil, S., Sathyanarayana, A., & Shwetha, G. C. (2024). Performance and Evaluation for Durability Enhancement of Self Compacting Concrete Using Ground Granulated Blast Furnace Slag. Journal of Applied Engineering Sciences, 14(2), 236–245. doi:10.2478/jaes-2024-0029.
[40] Gao, D., Yan, D., & Li, X. (2014). Flexural properties after exposure to elevated temperatures of a ground granulated blast furnace slag concrete incorporating steel fibers and polypropylene fibers. Fire and Materials, 38(5), 576–587. doi:10.1002/fam.2198.
[41] Samad, S., Shah, A., & Limbachiya, M. C. (2017). Strength development characteristics of concrete produced with blended cement using ground granulated blast furnace slag (GGBS) under various curing conditions. Sadhana - Academy Proceedings in Engineering Sciences, 42(7), 1203–1213. doi:10.1007/s12046-017-0667-z.
[42] Özbay, E., Erdemir, M., & Durmuş, H. I. (2016). Utilization and efficiency of ground granulated blast furnace slag on concrete properties - A review. Construction and Building Materials, 105, 423–434. doi:10.1016/j.conbuildmat.2015.12.153.
[43] Pal, S. C., Mukherjee, A., & Pathak, S. R. (2003). Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cement and Concrete Research, 33(9), 1481–1486. doi:10.1016/S0008-8846(03)00062-0.
[44] Yeau, K. Y., & Kim, E. K. (2005). An experimental study on corrosion resistance of concrete with ground granulate blast-furnace slag. Cement and Concrete Research, 35(7), 1391–1399. doi:10.1016/j.cemconres.2004.11.010.
[45] Sharma, A. K., & Sivapullaiah, P. V. (2016). Ground granulated blast furnace slag amended fly ash as an expansive soil stabilizer. Soils and Foundations, 56(2), 205–212. doi:10.1016/j.sandf.2016.02.004.
[46] Dinakar, P., Sethy, K. P., & Sahoo, U. C. (2013). Design of self-compacting concrete with ground granulated blast furnace slag. Materials and Design, 43, 161–169. doi:10.1016/j.matdes.2012.06.049.
[47] Abbass, M., Singh, D., & Singh, G. (2021). Properties of hybrid geopolymer concrete prepared using rice husk ash, fly ash and GGBS with coconut fiber. Materials Today: Proceedings, 45, 4964–4970. doi:10.1016/j.matpr.2021.01.390.
[48] Liu, X., Xiao, G., Yang, D., Dai, L., & Tang, A. (2024). Sustainable Cementitious Materials: Strength and Microstructural Characteristics of Calcium Carbide Residue-Activated Ground Granulated Blast Furnace Slag–Fly Ash Composites. Sustainability (Switzerland), 16(24), 11168. doi:10.3390/su162411168.
[49] Naik, T. R. (2008). Sustainability of Concrete Construction. Practice Periodical on Structural Design and Construction, 13(2), 98–103. doi:10.1061/(asce)1084-0680(2008)13:2(98).
[50] Crossin, E. (2015). The greenhouse gas implications of using ground granulated blast furnace slag as a cement substitute. Journal of Cleaner Production, 95, 101–108. doi:10.1016/j.jclepro.2015.02.082.
[51] Zhao, H., Sun, W., Wu, X., & Gao, B. (2015). The properties of the self-compacting concrete with fly ash and ground granulated blast furnace slag mineral admixtures. Journal of Cleaner Production, 95, 66–74. doi:10.1016/j.jclepro.2015.02.050.
[52] Yu, R., Spiesz, P., & Brouwers, H. J. H. (2015). Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses. Cement and Concrete Composites, 55, 383–394. doi:10.1016/j.cemconcomp.2014.09.024.
[53] Gholampour, A., & Ozbakkaloglu, T. (2017). Performance of sustainable concretes containing very high volume Class-F fly ash and ground granulated blast furnace slag. Journal of Cleaner Production, 162, 1407–1417. doi:10.1016/j.jclepro.2017.06.087.
[54] Verian, K. P., Ashraf, W., & Cao, Y. (2018). Properties of recycled concrete aggregate and their influence in new concrete production. Resources, Conservation and Recycling, 133, 30–49. doi:10.1016/j.resconrec.2018.02.005.
[55] Prasanna, P. K., Srinivasu, K., & Ramachandra Murthy, A. (2021). Strength and durability of fiber reinforced concrete with partial replacement of cement by Ground Granulated Blast Furnace Slag. Materials Today: Proceedings, 47, 5416–5425. doi:10.1016/j.matpr.2021.06.267.
[56] Cahyani, R. A. T., & Rusdianto, Y. (2021). An Overview of Behaviour of Concrete with Granulated Blast Furnace Slag as Partial Cement Replacement. IOP Conference Series: Earth and Environmental Science, 933(1), 012006. doi:10.1088/1755-1315/933/1/012006.
[57] Liu, S., Wang, Z., & Li, X. (2014). Long-term properties of concrete containing ground granulated blast furnace slag and steel slag. Magazine of Concrete Research, 66(21), 1095–1103. doi:10.1680/macr.14.00074.
[58] Majhi, R. K., & Nayak, A. N. (2019). Bond, durability and microstructural characteristics of ground granulated blast furnace slag based recycled aggregate concrete. Construction and Building Materials, 212, 578–595. doi:10.1016/j.conbuildmat.2019.04.017.
[59] Kim, H., Koh, T., & Pyo, S. (2016). Enhancing flowability and sustainability of ultra-high performance concrete incorporating high replacement levels of industrial slags. Construction and Building Materials, 123, 153–160. doi:10.1016/j.conbuildmat.2016.06.134.
[60] Chen, H. J., Huang, S. S., Tang, C. W., Malek, M. A., & Ean, L. W. (2012). Effect of curing environments on strength, porosity and chloride ingress resistance of blast furnace slag cement concretes: A construction site study. Construction and Building Materials, 35, 1063–1070. doi:10.1016/j.conbuildmat.2012.06.052.
[61] Divsholi, B. S., Lim, T. Y. D., & Teng, S. (2014). Durability Properties and Microstructure of Ground Granulated Blast Furnace Slag Cement Concrete. International Journal of Concrete Structures and Materials, 8(2), 157–164. doi:10.1007/s40069-013-0063-y.
[62] Cao, Q., Nawaz, U., Jiang, X., Zhanga, L., & Ansari, W. S. (2022). Effect of air-cooled blast furnace slag aggregate on mechanical properties of ultra-high-performance concrete. Case Studies in Construction Materials, 16. doi:10.1016/j.cscm.2022.e01027.
[63] Jose, S. K., Soman, M., & Sheela Evangeline, Y. (2021). Ecofriendly building blocks using foamed concrete with ground granulated blast furnace slag. International Journal of Sustainable Engineering, 14(4), 776-784. doi:10.1080/19397038.2020.1836064.
[64] Song, W., Zhu, Z., Pu, S., Wan, Y., Huo, W., Song, S., Zhang, J., Yao, K., & Hu, L. (2020). Efficient use of steel slag in alkali-activated fly ash-steel slag-ground granulated blast furnace slag ternary blends. Construction and Building Materials, 259, 119814. doi:10.1016/j.conbuildmat.2020.119814.
[65] Tang, Z., Li, W., Tam, V. W. Y., & Luo, Z. (2020). Investigation on dynamic mechanical properties of fly ash/slag-based geopolymeric recycled aggregate concrete. Composites Part B: Engineering, 185, 107776. doi:10.1016/j.compositesb.2020.107776.
[66] Abdellatief, M., AL-Tam, S. M., Elemam, W. E., Alanazi, H., Elgendy, G. M., & Tahwia, A. M. (2023). Development of ultra-high-performance concrete with low environmental impact integrated with metakaolin and industrial wastes. Case Studies in Construction Materials, 18. doi:10.1016/j.cscm.2022.e01724.
[67] Benkhelil, M., Arroudj, K., Guettala, S., & Douara, T. H. (2023). Prediction of the physico-mechanical characteristics of a high-performance concrete containing dune sand powder and ground blast-furnace slag. Construction and Building Materials, 398, 132482. doi:10.1016/j.conbuildmat.2023.132482.
[68] Kim, Y., Hanif, A., Usman, M., Munir, M. J., Kazmi, S. M. S., & Kim, S. (2018). Slag waste incorporation in high early strength concrete as cement replacement: Environmental impact and influence on hydration & durability attributes. Journal of Cleaner Production, 172, 3056–3065. doi:10.1016/j.jclepro.2017.11.105.
[69] Moula, S., Ben Fraj, A., Wattez, T., Bouasker, M., & Bel Hadj Ali, N. (2023). The very early-age behaviour of Ultra-High Performance Concrete containing ground granulated blast furnace slag. Construction and Building Materials, 400. doi:10.1016/j.conbuildmat.2023.132630.
[70] Su, N., Hsu, K. C., & Chai, H. W. (2001). A simple mix design method for self-compacting concrete. Cement and Concrete Research, 31(12), 1799–1807. doi:10.1016/S0008-8846(01)00566-X.
[71] Cahyani, R. A. T., Setyono, E., & Rusdianto, Y. (2020). Performa Beton Dengan Ground Granulated Blast Furnace Slag Terhadap Sulfate Attack. Jurnal Rekayasa Sipil (JRS-Unand), 16(3), 185. doi:10.25077/jrs.16.3.185-193.2020.
[72] Cahyani, R. A. T., & Rusdianto, Y. (2020). Concrete Performance with Ground Granulated Blast Furnace Slag as Supplementary Cementitious Materials. IOP Conference Series: Materials Science and Engineering, 771(1), 012062. doi:10.1088/1757-899X/771/1/012062.
[73] Lee, J. Y., Choi, J. S., Yuan, T. F., Yoon, Y. S., & Mitchell, D. (2019). Comparing properties of concrete containing electric arc furnace slag and granulated blast furnace slag. Materials, 12(9), 1371. doi:10.3390/ma12091371.
[74] Ustabaş, İ., & Kaya, A. (2018). Comparing the pozzolanic activity properties of obsidian to those of fly ash and blast furnace slag. Construction and Building Materials, 164, 297–307. doi:10.1016/j.conbuildmat.2017.12.185.
[75] Lal Jain, K., Singh Rajawat, L., & Sancheti, G. (2021). Mechanical Properties of Ground Granulated Blast Furnace Slag Made Concrete. IOP Conference Series: Earth and Environmental Science, 796(1), 012063. doi:10.1088/1755-1315/796/1/012063.
[76] Malipeddi, R., & Adiseshu, S. (2022). Ground Granulated Blast Furnace Slag as a Cement Replacement in Concrete: An Analysis of Dissolution. Journal of The Institution of Engineers (India): Series A, 103(2), 481–492. doi:10.1007/s40030-022-00623-7.
[77] Patra, R. K., & Mukharjee, B. B. (2017). Influence of incorporation of granulated blast furnace slag as replacement of fine aggregate on properties of concrete. Journal of Cleaner Production, 165, 468–476. doi:10.1016/j.jclepro.2017.07.125.
[78] Patra, R. K., & Mukharjee, B. B. (2024). Characteristics of concrete containing granulated blast furnace slag: a factorial design approach. Journal of Building Pathology and Rehabilitation, 9(1), 73. doi:10.1007/s41024-024-00429-z.
[79] Mukharjee, B. B., & Patra, R. K. (2021). Effects of utilising granulated blast furnace slag as fine aggregate on concrete: a factorial design approach. Innovative Infrastructure Solutions, 6(4), 195. doi:10.1007/s41062-021-00565-2.
[80] Oseke, I. F., & Dangiwa, F. P. (2025). Optimal Cement Replacement Levels in Concrete Using Ground Granulated Blast Furnace-Slag for Workability and Strength Development. Open Journal of Engineering Science, 6(1), 1–14. doi:10.52417/ojes.v6i1.786.
[81] Vishakha N. Surati, V. N. S. (2022). Application of Ground Granulated Blast Furnace Slag (GGBS) In High Performance Concrete. Journal of Science and Technology, 7(9), 12–23. doi:10.46243/jst.2022.v7.i09.pp12-23.
[82] Sahu, A., Kumar, S., Srivastav, A., & Anurag, H. (2025). Experimental investigation on the performance of ground granulated blast furnace slag and copper slag blended recycled aggregate concrete exposed to elevated temperatures. Journal of Building Engineering, 105(112531). doi:10.1016/j.jobe.2025.112531.
[83] Shen, D., Jiao, Y., Gao, Y., Zhu, S., & Jiang, G. (2020). Influence of ground granulated blast furnace slag on cracking potential of high performance concrete at early age. Construction and Building Materials, 241, 117839. doi:10.1016/j.conbuildmat.2019.117839.
[84] Manojsuburam, R., Sakthivel, E., & Jayanthimani, E. (2022). A study on the mechanical properties of alkali activated ground granulated blast furnace slag and fly ash concrete. Materials Today: Proceedings, 62, 1761–1764. doi:10.1016/j.matpr.2021.12.328.
[85] Tran, T. M., Trinh, H. T. M. K., Nguyen, D., Tao, Q., Mali, S., & Pham, T. M. (2023). Development of sustainable ultra-high-performance concrete containing ground granulated blast furnace slag and glass powder: Mix design investigation. Construction and Building Materials, 397, 132358. doi:10.1016/j.conbuildmat.2023.132358.
[86] Sumajouw, D. M. J., Hardjito, D., Wallah, S. E., & Rangan, B. V. (2007). Fly ash-based geopolymer concrete: Study of slender reinforced columns. Journal of Materials Science, 42(9), 3124–3130. doi:10.1007/s10853-006-0523-8.
[87] Siddique, R., & Kunal. (2016). Utilization of industrial by-products and natural ashes in mortar and concrete. Nonconventional and Vernacular Construction Materials, 159–204. doi:10.1016/b978-0-08-100038-0.00007-x.
[88] Tahwia, A. M., Elgendy, G. M., & Amin, M. (2022). Mechanical properties of affordable and sustainable ultra-high-performance concrete. Case Studies in Construction Materials, 16. doi:10.1016/j.cscm.2022.e01069.
[89] Althoey, F., Ansari, W. S., Sufian, M., & Deifalla, A. F. (2023). Advancements in low-carbon concrete as a construction material for the sustainable built environment. Developments in the Built Environment, 16, 100284. doi:10.1016/j.dibe.2023.100284.
[90] Fode, T. A., Chande Jande, Y. A., & Kivevele, T. (2023). Effects of different supplementary cementitious materials on durability and mechanical properties of cement composite-Comprehensive review. Heliyon, 9(7), e17924. doi:10.1016/j.heliyon.2023.e17924.
[91] Dellinghausen, L. M., Gastaldini, A. L. G., Vanzin, F. J., & Veiga, K. K. (2012). Total shrinkage, oxygen permeability, and chloride ion penetration in concrete made with white Portland cement and blast-furnace slag. Construction and Building Materials, 37, 652–659. doi:10.1016/j.conbuildmat.2012.07.076.
[92] Yuan, J., Lindquist, W., Darwin, D., & Browning, J. A. (2015). Effect of slag cement on drying shrinkage of concrete. ACI Materials Journal, 112(2), 267–276. doi:10.14359/51687129.
[93] Zhou, X. M., Slater, J. R., Wavell, S. E., & Oladiran, O. (2012). Effects of PFA and GGBS on early-ages engineering properties of Portland cement systems. Journal of Advanced Concrete Technology, 10(2), 74–85. doi:10.3151/jact.10.74.
[94] Sara, B., Mhamed, A., Otmane, B., & Karim, E. (2023). Elaboration of a Self-Compacting mortar based on concrete demolition waste incorporating blast furnace slag. Construction and Building Materials, 366. doi:10.1016/j.conbuildmat.2022.130165.
[95] Mehta, A., Siddique, R., Ozbakkaloglu, T., Uddin Ahmed Shaikh, F., & Belarbi, R. (2020). Fly ash and ground granulated blast furnace slag-based alkali-activated concrete: Mechanical, transport and microstructural properties. Construction and Building Materials, 257. doi:10.1016/j.conbuildmat.2020.119548.
[96] ASTM C136/C136M-19. (2019). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0136_C0136M-19.
[97] ACI 211.1-91. (2002) Standard Practice for Selecting Proportion Normal, Heavyweight and Mass Concrete. American Concrete Institute (ACI), Farmington Hills, United States.
[98] ASTM C192/C192M-19. (2024). Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International, Pennsylvania, United States. doi:10.1520/C0192_C0192M-19.
[99] Bheel, N., Abbasi, S. A., Awoyera, P., Olalusi, O. B., Sohu, S., Rondon, C., & Echeverriá, A. M. (2020). Fresh and hardened properties of concrete incorporating binary blend of metakaolin and ground granulated blast furnace slag as supplementary cementitious material. Advances in Civil Engineering, 8851030. doi:10.1155/2020/8851030.
[100] Qi, A., Liu, X., Wang, Z., & Chen, Z. (2020). Mechanical properties of the concrete containing ferronickel slag and blast furnace slag powder. Construction and Building Materials, 231. doi:10.1016/j.conbuildmat.2019.117120.
[101] ASTM C39/C39M-18. (2003). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039M-18.
[102] ASTM C496/C496M-17. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0496_C0496M-17.
[103] ASTM C293/C293M-16. (2010). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading) (Withdrawn 2025). ASTM International, Pennsylvania, United States.
[104] ASTM C469/C469M-22. (2022). Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression. ASTM International, Pennsylvania, United States.
[105] ASTM E1252-98(2021). (2021). Standard Practice for General Techniques for Obtaining Infrared Spectra for Qualitative Analysis. ASTM International, Pennsylvania, United States. doi:10.1520/E1252-98R21.
[106] ASTM C1723-16. (2022). Standard Guide for Examination of Hardened Concrete Using Scanning Electron Microscopy. ASTM International, Pennsylvania, United States. doi:10.1520/C1723-16.
[107] UNE-EN 13925-1:2006. (2006). Non-Destructive Testing—X-ray Diffraction from Polycrystalline and Amorphous Materials—Part 1: General Principles. AENOR (Asociación Española de Normalización), Madrid, Spain.
[108] Wang, J. L., Niu, K. M., Yang, Z. F., Zhou, M. K., Sun, L. Q., & Ke, G. J. (2009). Effects of fly ash and ground granulated blast-furnaces slag on properties of high-strength concrete. Key Engineering Materials, 405–406, 219–225. doi:10.4028/www.scientific.net/kem.405-406.219.
[109] Wang, Q., Yan, P., Yang, J., & Zhang, B. (2013). Influence of steel slag on mechanical properties and durability of concrete. Construction and Building Materials, 47, 1414–1420. doi:10.1016/j.conbuildmat.2013.06.044.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.