Theoretical Enhancement of Point Resistance in Sandy Soils Using Bio-Inspired Cranial Asperity Ratios
Downloads
This study aims to enhance the bearing capacity of pile foundations in sandy soils through a bio-inspired approach by modifying Meyerhof’s empirical equation using a cranial correction factor. The adjustment considers the geometric influence of the asperity length–height ratio (L/H 20, 26.67, and 33.33) applied to different pile diameters. The analysis was carried out theoretically by calculating point resistance (Qp) using the modified equation, followed by validation through ANOVA and the nonparametric Mann–Whitney test. The results indicate that an L/H ratio of 20 provides the most significant improvement in Qp, ranging from 11.7% to 465.8% compared to the conventional Meyerhof model, particularly at lower D/B ratios where stress concentration can be optimally mobilized. Larger ratios such as 26.67 and 33.33 also improve capacity, though less effectively than L/H 20, yet still outperform unmodified foundations. The correction factors obtained, ranging from Cᵣ 1.07 to 5.66, demonstrate the substantial contribution of geometric modification to load transfer efficiency. The novelty of this research lies in integrating anisotropic interface properties into the classical Meyerhof model, thereby bridging the gap between isotropic predictions and anisotropic experimental evidence. Accordingly, the developed theoretical framework not only strengthens the basis for calculating pile bearing capacity but also opens new avenues for bio-inspired foundation design that is more efficient and sustainable.
Downloads
[1] Gray, J., & Lissmann, H. W. (1950). The Kinetics of Locomotion of the Grass-Snake. Journal of Experimental Biology, 26(4), 354–367. doi:10.1242/jeb.26.4.354.
[2] Richards Jr, R., Elms, D. G., & Budhu, M. (1993). Seismic bearing capacity and settlements of foundations. Journal of Geotechnical Engineering, 119(4), 662-674. doi:10.1061/(ASCE)0733-9410(1993)119:4(662).
[3] Marvi, H., & Hu, D. L. (2012). Friction enhancement in concertina locomotion of snakes. Journal of the Royal Society Interface, 9(76), 3067–3080. doi:10.1098/rsif.2012.0132.
[4] Meyerhof, G. G. (1976). Bearing Capacity and Settlement of Pile Foundations. Journal of the Geotechnical Engineering Division, 102(3), 197–228. doi:10.1061/ajgeb6.0000243.
[5] Martinez, A., & Frost, J. D. (2017). The influence of surface roughness form on the strength of sand-structure interfaces. Geotechnique Letters, 7(1), 104–111. doi:10.1680/jgele.16.00169.
[6] O’Hara, K. B., & Martinez, A. (2020). Monotonic and Cyclic Frictional Resistance Directionality in Snakeskin-Inspired Surfaces and Piles. Journal of Geotechnical and Geoenvironmental Engineering, 146(11), 04020116. doi:10.1061/(asce)gt.1943-5606.0002368.
[7] Darwin, C. (1959). The Origin of Species, 1859-1959. Bios, 30(2), 67-72.
[8] DeJong, J. T., Burrall, M., Wilson, D. W., & Frost, J. D. (2017). A Bio-Inspired Perspective for Geotechnical Engineering Innovation. Geotechnical Frontiers 2017, 862–870. doi:10.1061/9780784480472.092.
[9] Martinez, A., & Palumbo, S. (2018). Anisotropic Shear Behavior of Soil-Structure Interfaces: Bio-Inspiration from Snake Skin. IFCEE 2018, 94–104. doi:10.1061/9780784481592.010.
[10] Mak, T. W., & Shu, L. H. (2004). Abstraction of biological analogies for design. CIRP Annals - Manufacturing Technology, 53(1), 117–120. doi:10.1016/S0007-8506(07)60658-1.
[11] Benz, M. J., Kovalev, A. E., & Gorb, S. N. (2012). Anisotropic frictional properties in snakes. Bioinspiration, Biomimetics, and Bioreplication 2012, 8339(i), 83390X. doi:10.1117/12.916972.
[12] Martinez, A., & O’hara, K. (2021). Skin friction directionality in monotonically-and cyclically-loaded bio-inspired piles in sand. DFI Journal, 15(1). doi:10.37308/DFIJnl.20200831.222.
[13] Han, F., Ganju, E., Salgado, R., & Prezzi, M. (2018). Effects of Interface Roughness, Particle Geometry, and Gradation on the Sand–Steel Interface Friction Angle. Journal of Geotechnical and Geoenvironmental Engineering, 144(12), 10–16. doi:10.1061/(asce)gt.1943-5606.0001990.
[14] Palumbo, S. (2018). Anisotropic Interface Shear Behavior of Granular Soil and Surfaces Biologically-Inspired by Snakeskin. Journal of Chemical Information and Modeling, 53(9), 1689–1699.
[15] Martinez, A., Palumbo, S., & Todd, B. D. (2019). Bioinspiration for Anisotropic Load Transfer at Soil–Structure Interfaces. Journal of Geotechnical and Geoenvironmental Engineering, 145(10), 1–14,. doi:10.1061/(asce)gt.1943-5606.0002138.
[16] Martinez, A., Zamora, F., & Wilson, D. (2024). Field Evaluation of the Installation and Pullout of Snakeskin-Inspired Anchorage Elements. Journal of Geotechnical and Geoenvironmental Engineering, 150(8), 04024068. doi:10.1061/jggefk.gteng-12311.
[17] Zhong, W., Liu, H., Wang, Q., Zhang, W., Li, Y., Ding, X., & Chen, L. (2021). Investigation of the penetration characteristics of snake skin-inspired pile using DEM. Acta Geotechnica, 16(6), 1849–1865. doi:10.1007/s11440-020-01132-2.
[18] O’Hara, K. B., & Martinez, A. (2022). Shaft and Base Capacity of Snakeskin-Inspired Piles from Centrifuge Pile Tests. Geo-Congress 2022, 170–180. doi:10.1061/9780784484029.016.
[19] Prandtl, L. (1918). Airfoil Theory—Communication I. Proceedings of the Royal Society of Göttingen, Mathematical-Physical Class, 451-477.
[20] Reissner, H. (1924). Regarding the earth pressure problem. Proceedings of the 1st international conference for applied mechanics, Delft, Netherlands. (In German).
[21] OuYang, H., Dai, G., & Gong, W. (2024). Analysis of influencing factors of penetration mechanism and vertical bearing characteristics of monopile in calcareous sand: Laboratory model testing and in-situ testing. Soil Dynamics and Earthquake Engineering, 180, 108577. doi:10.1016/j.soildyn.2024.108577.
[22] Zhang, L. (2024). Experimental Investigation of Vertical and Lateral Bearing Behaviors of Single Piles. Soil Mechanics and Foundation Engineering, 61(3), 239–247. doi:10.1007/s11204-024-09968-6.
[23] Maralapalle, V. C., Nadaf, M. B., Dutta, S., Zende, A. A., Mishra, S. S., & Charhate, S. (2023). Load-settlement and skin friction behaviour of piles in dry sand: experimental and numerical study. Sādhanā, 49(1), 4. doi:10.1007/s12046-023-02362-2.
[24] Qin, H., Zhao, X., & Li, S. (2021). Experiment study on bearing capacity of large-diameter long pile in large thickness backfill loess site. Proc.SPIE, 58. doi:10.1117/12.2619758.
[25] Terzaghi, K. (1943). Theoretical soil mechanics. Wiley, Hoboken, United States. doi:10.1002/9780470172766.
[26] Liang, C., & Liu, R. (2021). Calculation method for the vertical bearing capacity of a riser-surface casing composite pile. Ships and Offshore Structures, 16(S2), 66–76. doi:10.1080/17445302.2020.1861711.
[27] Shulyatyev, O. A., & Shulyatyev, S. O. (2023). Influence of pile foundation technology on the skin friction. Smart Geotechnics for Smart Societies, 2100–2108. doi:10.1201/9781003299127-321.
[28] Meyerhof, G. G. (1951). The Ultimate Bearing Capacity of Foundations. Géotechnique, 2(4), 301–332. doi:10.1680/geot.1951.2.4.301.
[29] Vesic, A. B. (1963). Bearing capacity of deep foundations in sand. Highway Research Record, (39), 112-153.
[30] Lee, J. H., & Salgado, R. (1999). Determination of Pile Base Resistance in Sands. Journal of Geotechnical and Geoenvironmental Engineering, 125(8), 673–683. doi:10.1061/(asce)1090-0241(1999)125:8(673).
[31] Hataf, N., & Shafaghat, A. (2015). Optimizing the Bearing Capacity of Tapered Piles in Realistic Scale Using 3D Finite Element Method. Geotechnical and Geological Engineering, 33(6), 1465–1473. doi:10.1007/s10706-015-9912-6.
[32] Moon, J. S., & Lee, S. (2016). Static skin friction behavior of a single micropile in sand. KSCE Journal of Civil Engineering, 20(5), 1793–1805. doi:10.1007/s12205-016-0918-2.
[33] Martinez, A., & Frost, J. D. (2018). Undrained Behavior of Sand–Structure Interfaces Subjected to Cyclic Torsional Shearing. Journal of Geotechnical and Geoenvironmental Engineering, 144(9), 1–13. doi:10.1061/(asce)gt.1943-5606.0001942.
[34] Wang, H., Wang, L. Z., Hong, Y., He, B., & Zhu, R. H. (2020). Quantifying the influence of pile diameter on the load transfer curves of laterally loaded monopile in sand. Applied Ocean Research, 101. doi:10.1016/j.apor.2020.102196.
[35] Abellan-Garcia, J., Abbas, Y. M., Khan, M. I., & Pellicer-Martínez, F. (2024). ANOVA-guided assessment of waste glass and limestone powder influence on ultra-high-performance concrete properties. Case Studies in Construction Materials, 20. doi:10.1016/j.cscm.2024.e03231.
[36] Megdouli, K., Gholizadeh, T., Tashtoush, B., Cinnella, P., & Skorek-Osikowska, A. (2024). Optimization of carbon dioxide ejector expansion transcritical refrigeration system with ANOVA and NSGA-II. International Journal of Refrigeration, 158, 173–189. doi:10.1016/j.ijrefrig.2023.11.012.
[37] Kumar, P., Almeida, F., AR, A., & Al-Mdallal, Q. (2025). Construction of optimised theoretical model using ANOVA -Taguchi methodology for transient flow of Carreau nanofluid through microchannel prone to radiation. Alexandria Engineering Journal, 112, 411–423. doi:10.1016/j.aej.2024.10.111.
[38] Ermergen, T., & Taylan, F. (2024). Investigation of DOE model analyses for open atmosphere laser polishing of additively manufactured Ti-6Al-4V samples by using ANOVA. Optics and Laser Technology, 168. doi:10.1016/j.optlastec.2023.109832.
[39] Gayathri, V. L., Vangla, P., & Riya, A. (2022). Effect of snakeskin-inspired patterns on the shear response of soil-continuum interfaces. International Journal of Geotechnical Engineering, 16(6), 759-775. doi:10.1080/19386362.2022.2066049.
[40] O’Hara, K. B., & Martinez, A. (2020). Effects of Asperity Height on Monotonic and Cyclic Interface Behavior of Bioinspired Surfaces under Constant Normal Stiffness Conditions. American Society of Civil Engineers (ASCE), 243–252. doi:10.1061/9780784482834.027.
[41] Song, J., Huang, H., Wang, X., & Shi, W. (2023). Status and prospects of surface texturing: Design, manufacturing and applications. Surface Science and Technology, 1(1), 21. doi:10.1007/s44251-023-00022-5.
[42] Sharafutdinov, V. A. T. (2023). A Radon-type transform related to the Euler equations for an ideal fluid. Siberian Electronic Mathematical News, 20(2), 880–912. doi:10.33048/semi.2023.020.054.
[43] Lee, S. H., Nawaz, M. N., & Chong, S. H. (2023). Estimation of interface frictional anisotropy between sand and snakeskin-inspired surfaces. Scientific Reports, 13(1), 3975. doi:10.1038/s41598-023-31047-3.
[44] Stutz, H. H., & Martinez, A. (2021). Directionally dependent strength and dilatancy behavior of soil–structure interfaces. Acta Geotechnica, 16(9), 2805–2820. doi:10.1007/s11440-021-01199-5.
[45] Han, F., Ganju, E., Salgado, R., & Prezzi, M. (2018). Effects of Interface Roughness, Particle Geometry, and Gradation on the Sand–Steel Interface Friction Angle. Journal of Geotechnical and Geoenvironmental Engineering, 144(12), 04018096. doi:10.1061/(asce)gt.1943-5606.0001990.
[46] Nawaz, M. N., Lee, S. H., Chong, S. H., & Ku, T. (2024). Interface frictional anisotropy of dilative sand. Scientific Reports, 14(1), 6166. doi:10.1038/s41598-024-56621-1.
[47] Chen, L., Zhang, Y., Cui, Y., Wang, J., & Wang, M. (2022). Effects of Snake-Bioinspired Surface Texture on the Finger-Sealing Performance under Varied Working Conditions. Machines, 10(7), 569. doi:10.3390/machines10070569.
[48] Duffy, K., Gavin, K., Korff, M., de Lange, D., & Roubos, A. (2024). Influence of Installation Method on the Axial Capacity of Piles in Very Dense Sand. Journal of Geotechnical and Geoenvironmental Engineering, 150(6), 04024043. doi:10.1061/jggefk.gteng-12026.
[49] Lehane, B. M., Schneider, J. A., & Xu, X. (2007). Development of the UWA-05 Design Method for Open and Closed Ended Driven Piles in Siliceous Sand. American Society of Civil Engineers (ASCE), 1–10. doi:10.1061/40902(221)12.
[50] Guo, Y., Wang, C., Bouazza, A., Kong, G., & Ding, X. (2025). Thermal performance of pipe-type energy piles with open-ended heat exchange tubes. Applied Thermal Engineering, 258. doi:10.1016/j.applthermaleng.2024.124573.
[51] Wang, J., Dove, J. E., & Gutierrez, M. S. (2007). Anisotropy-Based Failure Criterion for Interphase Systems. Journal of Geotechnical and Geoenvironmental Engineering, 133(5), 599–608. doi:10.1061/(asce)1090-0241(2007)133:5(599).
[52] Fang, J., Zhao, Y., Feng, S., Chen, H., & Zhou, X. (2024). Thermo-hydro-mechanical behavior of soft soils beneath energy shallow foundations subjected to thermal and mechanical loads. Computers and Geotechnics, 176. doi:10.1016/j.compgeo.2024.106790.
[53] Huang, L., & Martinez, A. (2021). Load Transfer Anisotropy at Snakeskin-Inspired Clay-Structure Interfaces. IFCEE 2021, 119–129. doi:10.1061/9780784483428.013.
[54] Zhang, N., Chen, Y., Martinez, A., & Fuentes, R. (2023). A Bioinspired Self-Burrowing Probe in Shallow Granular Materials. Journal of Geotechnical and Geoenvironmental Engineering, 149(9), 04023073. doi:10.1061/jggefk.gteng-11507.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















