Predictive Modeling of CSH Formation in Cement Materials Based on SEM and EDS Analysis
Downloads
Calcium silicate hydrate (CSH) formation is a fundamental process required to enhance the density, strength, and durability of cementitious materials. However, there is a gap in the research on the structural, physical, and chemical transformations of CSH. The objectives of this study are to develop a predictive model of CSH formation in cementitious materials and evaluate the effects of gelatin powder (GP), silica fume (MS), ground coffee (SCG), and peanut shell (PS) on CSH formation. Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS) apply to the study of the composite cementitious materials. A multiple linear regression model is proposed to predict the changes of key elements, which improved the qualitative and quantitative understanding of the hydration mechanisms. The results show that GP significantly accelerates CSH formation by increasing the calcium and oxygen contents, while MS enhances pozzolanic activity by increasing the availability of silicon, resulting in structural densification. SCG contributes to the increase of carbon and oxygen by acting as a filler, while PS has minimal effect on hydration or crystallization. A regression model relating cement mix design proportions and CSH shows strong correlations between admixtures and chemical changes, particularly for calcium (R²=0.988) and silica (R²=0.985). To fill the existing research gaps, this study goes beyond previous studies, which primarily focused on individual aspects of CSH formation without considering the convergence of structural and chemical analysis.
Downloads
[1] Harrisson, A. M. (2019). Constitution and specification of Portland cement. Lea’s Chemistry of Cement and Concrete, Butterworth-Heinemann, Oxford, United Kingdom. doi:10.1016/B978-0-08-100773-0.00004-6.
[2] Vijayan, D. S., Devarajan, P., & Sivasuriyan, A. (2023). A review on eminent application and performance of nano based silica and silica fume in the cement concrete. Sustainable Energy Technologies and Assessments, 56, 56. doi:10.1016/j.seta.2023.103105.
[3] Raza, S. S., Amir, M. T., Azab, M., Ali, B., Abdallah, M., El Ouni, M. H., & Elhag, A. B. (2022). Effect of micro-silica on the physical, tensile, and load-deflection characteristics of micro fiber-reinforced high-performance concrete (HPC). Case Studies in Construction Materials, 17, 17. doi:10.1016/j.cscm.2022.e01380.
[4] Zhang, L., Bian, M., Xiao, Z., Wang, X., & Han, B. (2023). A comprehensive review of cementitious composites modified with nano silica: Fabrication, microstructures, properties and applications. Construction and Building Materials, 409, 409. doi:10.1016/j.conbuildmat.2023.133922.
[5] Tabish, M., Zaheer, M. M., & Baqi, A. (2023). Effect of nano-silica on mechanical, microstructural and durability properties of cement-based materials: A review. Journal of Building Engineering, 65, 65. doi:10.1016/j.jobe.2022.105676.
[6] Mohana, R., & Bavithra, K. (2023). Influence of nano materials on the macro and micro structural behaviour of high performance concrete using interfacial transition zone approach. Construction and Building Materials, 397, 397. doi:10.1016/j.conbuildmat.2023.132465.
[7] Xia, W., Cui, S. A., Zhu, L. X., Li, W. K., Ju, J. W. W., & Wang, X. W. (2023). Effects of nano-silica modification on early age hydration process in winter construction of tunnel engineering. Construction and Building Materials, 408, 133804. doi:10.1016/j.conbuildmat.2023.133804.
[8] Vipulanandan, C., & Mohammed, A. (2019). Smart cement compressive piezoresistive, stress-strain, and strength behavior with nanosilica modification. Journal of Testing and Evaluation, 47(2), 1479–1501. doi:10.1520/JTE20170105.
[9] Mohammed, A. S. (2018). Vipulanandan models to predict the electrical resistivity, rheological properties and compressive stress-strain behavior of oil well cement modified with silica nanoparticles. Egyptian Journal of Petroleum, 27(4), 1265–1273. doi:10.1016/j.ejpe.2018.07.001.
[10] Rupasinghe, M., San Nicolas, R., Mendis, P., Sofi, M., & Ngo, T. (2017). Investigation of strength and hydration characteristics in nano-silica incorporated cement paste. Cement and Concrete Composites, 80, 17–30. doi:10.1016/j.cemconcomp.2017.02.011.
[11] Jo, B. W., Kim, C. H., Tae, G. ho, & Park, J. Bin. (2007). Characteristics of cement mortar with nano-SiO2 particles. Construction and Building Materials, 21(6), 1351–1355. doi:10.1016/j.conbuildmat.2005.12.020.
[12] Babu, G. R., Ramana, N. V., Kumar, T. N., & Kumar, K. V. (2019). Effect of nanosilica on properties and durability in cement. Materials Today: Proceedings, 19, 599-605. doi:10.1016/j.matpr.2019.07.739.
[13] Singh, L. P., Ali, D., & Sharma, U. (2016). Studies on optimization of silica nanoparticles dosage in cementitious system. Cement and Concrete Composites, 70, 60–68. doi:10.1016/j.cemconcomp.2016.03.006.
[14] Zhang, A., Ge, Y., Yang, W., Cai, X., & Du, Y. (2019). Comparative study on the effects of nano-SiO2, nano-Fe2O3 and nano-NiO on hydration and microscopic properties of white cement. Construction and Building Materials, 228, 116767. doi:10.1016/j.conbuildmat.2019.116767.
[15] Nguyen, V. T., Lee, S. Y., Chung, S. Y., Moon, J. H., & Kim, D. J. (2023). Use of multiphase voxels to simulate the effects of nano-silica on cement hydration. Case Studies in Construction Materials, 18, 1909. doi:10.1016/j.cscm.2023.e01909.
[16] Scrivener, K., Ouzia, A., Juilland, P., & Kunhi Mohamed, A. (2019). Advances in understanding cement hydration mechanisms. Cement and Concrete Research, 124, 1058. doi:10.1016/j.cemconres.2019.105823.
[17] Sowoidnich, T., Bellmann, F., Damidot, D., & Ludwig, H. M. (2019). New insights into tricalcium silicate hydration in paste. Journal of the American Ceramic Society, 102(5), 2965–2976. doi:10.1111/jace.16133.
[18] Barkatt, A., Macedo, P. B., Gibson, B. C., & Montrose, C. J. (1984). Modelling of Waste Form Performance and System Release. MRS Proceedings, 44. doi:10.1557/proc-44-3.
[19] Nicoleau, L., Nonat, A., & Perrey, D. (2013). The di- and tricalcium silicate dissolutions. Cement and Concrete Research, 47, 14–30. doi:10.1016/j.cemconres.2013.01.017.
[20] Gislason, S. R., & Oelkers, E. H. (2003). Mechanism, rates, and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature. Geochimica et Cosmochimica Acta, 67(20), 3817–3832. doi:10.1016/S0016-7037(00)00176-5.
[21] Avrami, M. (1939). Kinetics of phase change. I: General theory. The Journal of Chemical Physics, 7(12), 1103–1112. doi:10.1063/1.1750380.
[22] Rukzon, S., Rungruang, S., Thepwong, R., Chaisakulkiet, U., & Chindaprasirt, P. (2024). Optimizing Mortar Mixtures with Basalt Rubble: Impacts on Compressive Strength and Chloride Penetration. Civil Engineering Journal (Iran), 10(12), 4008–4018. doi:10.28991/CEJ-2024-010-12-013.
[23] Andalibi, M. R., Kumar, A., Srinivasan, B., Bowen, P., Scrivener, K., Ludwig, C., & Testino, A. (2018). On the mesoscale mechanism of synthetic calcium-silicate-hydrate precipitation: A population balance modeling approach. Journal of Materials Chemistry A, 6(2), 363–373. doi:10.1039/c7ta08784e.
[24] Ouzia, A. R. C. W. C. (2019). Modeling the kinetics of the main peak and later age of alite hydration. EPFL, 263. doi:10.5075/epfl-thesis-9499.
[25] Avet, F., & Scrivener, K. (2018). Investigation of the calcined kaolinite content on the hydration of Limestone Calcined Clay Cement (LC3). Cement and Concrete Research, 107, 124–135. doi:10.1016/j.cemconres.2018.02.016.
[26] Hanpongpun, W. (2019). Investigation of the use of Limestone Calcined Clay Cement (LC3) applied to Thailand. EPFL-Lausanne, 4. doi:10.5075/epflthesis-9005.
[27] Zhang, L., Jing, H., Gao, Y., Yu, Z., & Liu, Y. (2024). Enhancement of the tensile properties of cement mortar composites with nanoadditives produced by chemical vapor deposition. Case Studies in Construction Materials, 21, 3469. doi:10.1016/j.cscm.2024.e03469.
[28] González-Coneo, J., Zarzuela, R., Luna, M., & Mosquera, M. J. (2024). Water-soluble fluorosilane supplemented with fumed silica as admixture for producing hydrophobic concrete: Effects on cement hydration, mechanical properties and water protection properties. Developments in the Built Environment, 17, 100317. doi:10.1016/j.dibe.2023.100317.
[29] Al-kroom, H., Rashad, A. M., Alghamdi, H., Abadel, A. A., Elrahman, M. A., Abdel-Gawwad, H. A., & Arif, M. A. (2024). Application of pretreated dealuminated kaolin as a modifier agent for alkali-activated slag cement. Case Studies in Construction Materials, 20. doi:10.1016/j.cscm.2024.e02858.
[30] Ijaz, N., Ye, W. M., Rehman, Z. ur, Ijaz, Z., & Junaid, M. F. (2024). Global insights into micro-macro mechanisms and environmental implications of limestone calcined clay cement (LC3) for sustainable construction applications. Science of the Total Environment, 907, 167794. doi:10.1016/j.scitotenv.2023.167794.
[31] Chiadighikaobi, P. C., Hasanzadeh, A., Hematibahar, M., Kharun, M., Mousavi, M. S., Stashevskaya, N. A., & Adegoke, M. A. (2024). Evaluation of the mechanical behavior of high-performance concrete (HPC) reinforced with 3D-Printed trusses. Results in Engineering, 22. doi:10.1016/j.rineng.2024.102058.
[32] Hematibahar, M., Hasanzadeh, A., Kharun, M., Beskopylny, A. N., Stel’makh, S. A., & Shcherban’, E. M. (2024). The Influence of Three-Dimensionally Printed Polymer Materials as Trusses and Shell Structures on the Mechanical Properties and Load-Bearing Capacity of Reinforced Concrete. Materials, 17(14), 17. doi:10.3390/ma17143413.
[33] Saprykina, T. K., & Zhadanov, V. I. (2025). Improving Theoretical Concepts of Composition Design of Dispersedly-Reinforced Concretes. Modern Trends in Construction, Urban and Territorial Planning, 3(4), 66–73. doi:10.23947/2949-1835-2024-3-4-66-73.
[34] Shcherban’, E. M., Stel’makh, S. A., Beskopylny, A. N., Mailyan, L. R., Meskhi, B., Chernil’nik, A., El’shaeva, D., Pogrebnyak, A., & Yaschenko, R. (2024). Influence of Sunflower Seed Husks Ash on the Structure Formation and Properties of Cement Concrete. Civil Engineering Journal (Iran), 10(5), 1475–1493. doi:10.28991/CEJ-2024-010-05-08.
[35] Shu, Y., & Zhang, J. (2023). Effect of Basalt Fiber Content and Length on the Strength and Crack Development of Polyvinyl Alcohol/Basalt Hybrid Fiber-Reinforced Cement Soil. Polymers, 15(9), 2146. doi:10.3390/polym15092146.
[36] Hematibahar, M., Kharun, M., Beskopylny, A. N., Stel’makh, S. A., Shcherban’, E. M., & Razveeva, I. (2024). Analysis of Models to Predict Mechanical Properties of High-Performance and Ultra-High-Performance Concrete Using Machine Learning. Journal of Composites Science, 8(8), 287. doi:10.3390/jcs8080287.
[37] Gou, J., Li, S., Jiang, C., Li, Z., & You, G. (2025). A Study on the Influence of Gypsum and Ca(OH)2 on the Mechanical Properties and Hydration Behavior of Multi-Component Solid Waste-Based Cementitious Materials. Materials, 18(9), 18. doi:10.3390/ma18091964.
[38] Jiang, L., Zhao, X., & Wang, H. (2025). Synthesis and Property Characterization of Low-Activity Waste-Derived Quaternary Cementitious Materials. Buildings, 15(9), 15. doi:10.3390/buildings15091426.
[39] Chen, J., Yu, K., Li, S., & Liu, D. (2025). Exploring the Mechanism of Microstructural Changes in Ultra-High-Performance Concrete Under Microwave Influence: Experiments and Molecular Dynamics Simulation. Materials, 18(9), 18. doi:10.3390/ma18091892.
[40] Yu, L., Xu, X., Ni, S., Meng, D., Meng, X., & Xu, B. (2025). Experimental and Molecular Dynamics Simulation Study on Sulfate Corrosion Resistance of Cellulose-Nanocrystal-Modified ECC. Applied Sciences (Switzerland), 15(6), 3205. doi:10.3390/app15063205.
[41] Buettner, N., Iyacu, G., Dal Poggetto, G., & Akono, A. T. (2025). The Effect of Carbon Nanofibers on the Microstructure, Chemistry, and Pore Structure of Concrete Made with Fine Recycled Concrete Aggregates. Nanomaterials, 15(4), 253. doi:10.3390/nano15040253.
[42] Lam, T. Van, & Nguyen, M. H. (2023). Incorporating Industrial By-Products into Geopolymer Mortar: Effects on Strength and Durability. Materials, 16(12), 4406. doi:10.3390/ma16124406.
[43] Alam, S., & Alselami, N. A. (2024). Geotechnical Properties of Fly Ash Blended Expansive Soil: A Review. Civil Engineering Journal, 10, 82–103. doi:10.28991/cej-sp2024-010-06.
[44] Bigi, A., Bracci, B., & Panzavolta, S. (2004). Effect of added gelatin on the properties of calcium phosphate cement. Biomaterials, 25(14), 2893–2899. doi:10.1016/j.biomaterials.2003.09.059.
[45] Alaj, A., Krasniqi, N., & Numao, T. (2024). Effect of Non-Class Fly Ash on Strength Properties of Concrete. Civil Engineering Journal (Iran), 10(3), 689–698. doi:10.28991/CEJ-2024-010-03-02.
[46] Kumar, A. (2017). Synthetic Calcium Silicate Hydrates. PhD Thesis, Swiss Federal Technology Institute of Lausanne, Lausanne, Switzerland.
[47] Kaya, M. (2020). Evaluating organic waste sources (spent coffee ground) as metal-free catalyst for hydrogen generation by the methanolysis of sodium borohydride. International Journal of Hydrogen Energy, 45(23), 12743–12754. doi:10.1016/j.ijhydene.2019.10.180.
[48] Suksiripattanapong, C., Kua, T. A., Arulrajah, A., Maghool, F., & Horpibulsuk, S. (2017). Strength and microstructure properties of spent coffee grounds stabilized with rice husk ash and slag geopolymers. Construction and Building Materials, 146, 312–320. doi:10.1016/j.conbuildmat.2017.04.103.
[49] Ballesteros, L. F., Teixeira, J. A., & Mussatto, S. I. (2014). Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food and Bioprocess Technology, 7(12), 3493–3503. doi:10.1007/s11947-014-1349-z.
[50] Bizzozero, J., Gosselin, C., & Scrivener, K. L. (2014). Expansion mechanisms in calcium aluminate and sulfoaluminate systems with calcium sulfate. Cement and Concrete Research, 56, 190–202. doi:10.1016/j.cemconres.2013.11.011.
[51] Yu, C., Sun, W., & Scrivener, K. (2013). Mechanism of expansion of mortars immersed in sodium sulfate solutions. Cement and Concrete Research, 43(1), 105–111. doi:10.1016/j.cemconres.2012.10.001.
[52] Bazzoni, A. (2014). Study of early hydration mechanisms of cement by means of electron microscopy. Ph.D. Thesis, Swiss Federal Technology Institute of Lausanne, Lausanne, Switzerland.
[53] Qu, Z., Yu, Q., Ong, G. P., Cardinaels, R., Ke, L., Long, Y., & Geng, G. (2023). 3D printing concrete containing thermal responsive gelatin: Towards cold environment applications. Cement and Concrete Composites, 140, 105029. doi:10.1016/j.cemconcomp.2023.105029.
[54] Wang, Y., Lu, H., Wang, J., & He, H. (2020). Effects of highly crystalized nano C-S-H particles on performances of portland cement paste and its mechanism. Crystals, 10(9), 1–17. doi:10.3390/cryst10090816.
[55] Wang, Q., Li, S., Wang, J., Pan, S., Lv, C., Cui, X., & Guo, Z. (2018). Effect of Graphene Oxide on Hydration Process and Main Hydration Products of Cement. Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 46(2), 163–172. doi:10.14062/j.issn.0454-5648.2018.02.10.
[56] Berenguer, R., Lima, N., Pinto, L., Monteiro, E., Povoas, Y., Oliveira, R., & Lima, N. B. D. (2021). Cement-based materials: Pozzolanic activities of mineral additions are compromised by the presence of reactive oxides. Journal of Building Engineering, 41, 102358. doi:10.1016/j.jobe.2021.102358.
[57] Gartner, E., Maruyama, I., & Chen, J. (2017). A new model for the CSH phase formed during the hydration of Portland cements. Cement and Concrete Research, 97, 95-106. doi:10.1016/j.cemconres.2017.03.001.
[58] Yee, J. J., Khong, S. C., Tee, K. F., Jolius, G., & Chin, S. C. (2024). Spent coffee grounds enhanced compressive strength of cement mortar: an optimization study. Discover Applied Sciences, 6(7), 379. doi:10.1007/s42452-024-06077-9.
[59] Ragalwar, K., Heard, W. F., Williams, B. A., & Ranade, R. (2020). Significance of the particle size distribution modulus for strain-hardening-ultra-high performance concrete (SH-UHPC) matrix design. Construction and Building Materials, 234, 117423. doi:10.1016/j.conbuildmat.2019.117423.
[60] Gupta, S., & Kashani, A. (2021). Utilization of biochar from unwashed peanut shell in cementitious building materials – Effect on early age properties and environmental benefits. Fuel Processing Technology, 218. doi:10.1016/j.fuproc.2021.106841.
[61] Pandey, L., Sarkar, S., Arya, A., Sharma, A. L., Panwar, A., Kotnala, R. K., & Gaur, A. (2023). Fabrication of activated carbon electrodes derived from peanut shell for high-performance supercapacitors. Biomass Conversion and Biorefinery, 13(8), 6737–6746. doi:10.1007/s13399-021-01701-9.
[62] Lima, N. B., Junior, R. V. A., Belarmino, M. K. D. L., Estolano, A. M. L., Manta, R. C., Teti, B. S., Júnior, B. B., Póvoas, Y. V., Monteiro, E. C. B., Oliveira, R. A., & Lima, N. B. D. (2019). Loss of mass, structural, and thermodynamic properties of concretes under rainy conditions. Journal of Molecular Structure, 1176, 622–632. doi:10.1016/j.molstruc.2018.09.006.
[63] Oey, T., Kumar, A., Bullard, J. W., Neithalath, N., & Sant, G. (2013). The filler effect: The influence of filler content and surface area on cementitious reaction rates. Journal of the American Ceramic Society, 96(6), 1978–1990. doi:10.1111/jace.12264.
[64] Puzatova, A. V., Dmitrieva, M. A., Tovpinets, A. O., & Leitsin, V. V. (2024). Study of Structural Defects Evolution in Fine-Grained Concrete Using Computed Tomography Methods. Advanced Engineering Research (Rostov-on-Don), 24(3), 227–237. doi:10.23947/2687-1653-2024-24-3-227-237.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.