Effect of Waste Tire Rubber Particles on the Properties of Rubberized Concrete
Downloads
Millions of waste tires accumulate annually worldwide, posing environmental and public health challenges. Recycling these tires in concrete production presents a sustainable and practical solution. The present study was intended to investigate the effects of waste tire particles of varying sizes and shapes; specifically granular, short fiber, and mixed fine crumb rubber, along with coarse shredded rubber; on the characteristics of rubberized concrete. Fine rubber particles replaced sand, while shredded rubber replaced stone aggregates at 5%, 10%, and 15% substitution levels by weight. Results revealed that increasing rubber content reduced density, compressive strength, modulus of elasticity, and tensile strength. However, workability, Poisson’s ratio, ductility, and toughness improved significantly in comparison with conventional concrete. This study compares the effects of particle size and shape of rubber used in rubberized concrete. Notably, the newly introduced short fiber-type rubber particles exhibited superior mechanical properties compared to the granular and shredded rubber forms, revealing their potential for structural applications.
Downloads
[1] Hisbani, N., Shafiq, N., Shams, M. A., Farhan, S. A., & Zahid, M. (2025). Properties of concrete containing crumb rubber as partial replacement of fine Aggregate—A review. Hybrid Advances, 10(100481). doi:10.1016/j.hybadv.2025.100481.
[2] Thomas, B. S., & Gupta, R. C. (2016). A comprehensive review on the applications of waste tire rubber in cement concrete. Renewable and Sustainable Energy Reviews, 54, 1323–1333. doi:10.1016/j.rser.2015.10.092.
[3] Malarvizhi, G., Senthil, N., & Kamaraj, C. (2012). A study on recycling of crumb rubber and low density polyethylene blend on stone matrix asphalt. International Journal of Scientific and Research Publications, 2(10), 1–16.
[4] Onuaguluchi, O., Borges, P. H. R., Bhutta, A., & Banthia, N. (2017). Performance of scrap tire steel fibers in OPC and alkali-activated mortars. Materials and Structures, 50(2), 157. doi:10.1617/s11527-017-1026-6.
[5] Eissa, M., Habib, A., AL Houri, A., & Alibrahim, B. (2024). Recent efforts on investigating the effects of recycled rubber content on the mechanical properties of structural concrete. Discover Civil Engineering, 1(1), 16. doi:10.1007/s44290-024-00017-7.
[6] Saad, A. G., Sakr, M. A., Khalifa, T. M., & Darwish, E. A. (2024). Structural Performance of Concrete Reinforced with Crumb Rubber: A Review of Current Research. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 49(4), 3211–3254. doi:10.1007/s40996-024-01629-w.
[7] Azunna, S. U., Aziz, F. N., Rashid, R. S., & Bakar, N. B. (2024). Review on the characteristic properties of crumb rubber concrete. Cleaner Materials, 12, 100237. doi:10.1016/j.clema.2024.100237.
[8] Al-Khuzaie, M. G., Al-Humeidawi, B. H., & Al-Sa’idi, R. F. (2020). Assessment of the mechanical properties of concrete pavement containing crumb rubber of tires. IOP Conference Series: Materials Science and Engineering, 737(1), 012141. doi:10.1088/1757-899x/737/1/012141.
[9] Hasan, A., Rana, M. M., & Khan, R. M. (2024). Mechanical properties of concrete using crumb rubber and human hair fiber. International Journal of Sustainable Building Technology and Urban Development, 15(1), 97–108. doi:10.22712/susb.20240008.
[10] Miller, N. M., & Tehrani, F. M. (2017). Mechanical properties of rubberized lightweight aggregate concrete. Construction and Building Materials, 147, 264–271. doi:10.1016/j.conbuildmat.2017.04.155.
[11] Sofi, A. (2018). Effect of waste tyre rubber on mechanical and durability properties of concrete – A review. Ain Shams Engineering Journal, 9(4), 2691–2700. doi:10.1016/j.asej.2017.08.007.
[12] Hasan, A., Howlader, M. A., Ahmed, R., & Saon, H. I. (2024). Influence of Steel Fiber and Superplasticizer on Crumb Rubberized Concrete. Journal of Technology, 39(4), 201–209.
[13] Kadhim, A. A., & Al-Mutairee, H. M. K. (2020). An experimental study on behavior of sustainable rubberized concrete mixes. Civil Engineering Journal (Iran), 6(7), 1273–1285. doi:10.28991/cej-2020-03091547.
[14] Youssf, O., Mills, J. E., Benn, T., Zhuge, Y., Ma, X., Roychand, R., & Gravina, R. (2020). Development of Crumb Rubber Concrete for Practical Application in the Residential Construction Sector – Design and Processing. Construction and Building Materials, 260. doi:10.1016/j.conbuildmat.2020.119813.
[15] Parung, H., Irmawaty, R., & Wijaya, D. M. (2020). Utilization of tire chips as a substitute for coarse aggregate in concrete. IOP Conference Series: Earth and Environmental Science, 419(1), 012068. doi:10.1088/1755-1315/419/1/012068.
[16] Mo, J., Ren, F., Ye, Y., Tian, S., & Lai, C. (2022). Effect of different crumb rubber particle sizes on the flexural properties of crumb rubber concrete. Materials Letters, 326, 132960. doi:10.1016/j.matlet.2022.132960.
[17] Abbas, S., Fatima, A., Kazmi, S. M. S., Munir, M. J., Ali, S., & Rizvi, M. A. (2022). Effect of Particle Sizes and Dosages of Rubber Waste on the Mechanical Properties of Rubberized Concrete Composite. Applied Sciences, 12(17), 8460. doi:10.3390/app12178460.
[18] Zheng, L., Sharon Huo, X., & Yuan, Y. (2008). Experimental investigation on dynamic properties of rubberized concrete. Construction and Building Materials, 22(5), 939–947. doi:10.1016/j.conbuildmat.2007.03.005.
[19] Zhang, D., Li, H., Tu, H., & Weng, Y. (2022). Investigation on the quasi-static mechanical properties and dynamic compressive behaviors of ultra-high performance concrete with crumbed rubber powders. Materials and Structures, 55(3), 104. doi:10.1617/s11527-022-01904-0.
[20] Aliabdo, A. A., Abd Elmoaty, A. E. M., & Abdelbaset, M. M. (2015). Utilization of waste rubber in non-structural applications. Construction and Building Materials, 91, 195–207. doi:10.1016/j.conbuildmat.2015.05.080.
[21] Gupta, T., Sharma, R. K., & Chaudhary, S. (2015). Impact resistance of concrete containing waste rubber fiber and silica fume. International Journal of Impact Engineering, 83, 76–87. doi:10.1016/j.ijimpeng.2015.05.002.
[22] Zheng, L., Huo, X. S., & Yuan, Y. (2008). Strength, Modulus of Elasticity, and Brittleness Index of Rubberized Concrete. Journal of Materials in Civil Engineering, 20(11), 692–699. doi:10.1061/(asce)0899-1561(2008)20:11(692).
[23] Ismail, M. K., & Hassan, A. A. A. (2016). Performance of full-scale self-consolidating rubberized concrete beams in flexure. ACI Materials Journal, 113(2), 207–218. doi:10.14359/51688640.
[24] XU, J., Yao, Z., Yang, G., & Han, Q. (2020). Research on crumb rubber concrete: From a multi-scale review. Construction and Building Materials, 232, 1–25. doi:10.1016/j.conbuildmat.2019.117282.
[25] Bisht, K., & Ramana, P. V. (2017). Evaluation of mechanical and durability properties of crumb rubber concrete. Construction and Building Materials, 155, 811–817. doi:10.1016/j.conbuildmat.2017.08.131.
[26] Xiong, C., Li, Q., Lan, T., Li, H., Long, W., & Xing, F. (2021). Sustainable use of recycled carbon fiber reinforced polymer and crumb rubber in concrete: mechanical properties and ecological evaluation. Journal of Cleaner Production, 279. doi:10.1016/j.jclepro.2020.123624.
[27] Sugapriya, P., & Ramkrishnan, R. (2018). Crumb Rubber Recycling in Enhancing Damping Properties of Concrete. IOP Conference Series: Materials Science and Engineering, 310(1), 012013. doi:10.1088/1757-899X/310/1/012013.
[28] Thomas, B. S., Gupta, R. C., & Panicker, V. J. (2016). Recycling of waste tire rubber as aggregate in concrete: Durability-related performance. Journal of Cleaner Production, 112, 504–513. doi:10.1016/j.jclepro.2015.08.046.
[29] Li, N., Long, G., Ma, C., Fu, Q., Zeng, X., Ma, K., Xie, Y., & Luo, B. (2019). Properties of self-compacting concrete (SCC) with recycled tire rubber aggregate: A comprehensive study. Journal of Cleaner Production, 236, 117707. doi:10.1016/j.jclepro.2019.117707.
[30] Jalal, M., & Jalal, H. (2020). Behavior assessment, regression analysis and support vector machine (SVM) modeling of waste tire rubberized concrete. Journal of Cleaner Production, 273, 122960. doi:10.1016/j.jclepro.2020.122960.
[31] Najmi, A. M., Mariyana, A. K., Shek, P. N., & Nurizaty, Z. (2020). Hardened properties of concrete with different proportion of crumb rubber and fly ash. IOP Conference Series: Materials Science and Engineering, 849(1), 012038. doi:10.1088/1757-899X/849/1/012038.
[32] Xie, J., Zheng, Y., Guo, Y., Ou, R., Xie, Z., & Huang, L. (2019). Effects of crumb rubber aggregate on the static and fatigue performance of reinforced concrete slabs. Composite Structures, 228. doi:10.1016/j.compstruct.2019.111371.
[33] ASTM C33/C33M-18. (2023). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.
[34] ACI Committee 211.1-91. (1991). Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete. American Concrete Institute, Detroit, United States.
[35] ASTM C143/C143M-12. (2015). Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM International. Pennsylvania, United States. doi:10.1520/C0143_C0143M-12.
[36] ASTM C39/C39M-21. (2023). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039M-21.
[37] ASTM C496-96. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0496-96.
[38] ASTM C469/C469M-14. (2021). Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. ASTM International, Pennsylvania, United States. doi:10.1520/C0469_C0469M-14.
[39] Shahrul, S., Mohammed, B. S., Wahab, M. M. A., & Liew, M. S. (2021). Mechanical properties of crumb rubber mortar containing nano-silica using response surface methodology. Materials, 14(19). doi:10.3390/ma14195496.
[40] Mohammadi, I., Khabbaz, H., & Vessalas, K. (2014). In-depth assessment of Crumb Rubber Concrete (CRC) prepared by water-soaking treatment method for rigid pavements. Construction and Building Materials, 71, 456–471. doi:10.1016/j.conbuildmat.2014.08.085.
[41] Khed, V. C., Mohammed, B. S., & Nuruddin, M. F. (2018). Effects of different crumb rubber sizes on the flowability and compressive strength of hybrid fibre reinforced ECC. IOP Conference Series: Earth and Environmental Science, 140(1), 012137. doi:10.1088/1755-1315/140/1/012137.
[42] Ozbay, E., Lachemi, M., & Sevim, U. K. (2011). Compressive strength, abrasion resistance and energy absorption capacity of rubberized concretes with and without slag. Materials and Structures/Materiaux et Constructions, 44(7), 1297–1307. doi:10.1617/s11527-010-9701-x.
[43] Raj, P. S., Satyanarayana, G. V. V., & Sriharshavarma, M. (2020). Investigation on Workability Of M20 Grade Concrete With Partial Replacement Of Crumb Rubber And M Sand For Fine Aggregates And Flyash For Cement. E3S Web of Conferences, 184, 01098. doi:10.1051/e3sconf/202018401098.
[44] Yasser, N., Abdelrahman, A., Kohail, M., & Moustafa, A. (2023). Experimental investigation of durability properties of rubberized concrete. Ain Shams Engineering Journal, 14(6), 102111. doi:10.1016/j.asej.2022.102111.
[45] Kilani, A. J., Ikotun, B. D., & Abdulwahab, R. (2025). Effect of Crumb Rubber on Concrete’s and Mortar’s Structural Properties: A Review. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 49(2), 1037–1067. doi:10.1007/s40996-024-01647-8.
[46] Hesami, S., Salehi Hikouei, I., & Emadi, S. A. A. (2016). Mechanical behavior of self-compacting concrete pavements incorporating recycled tire rubber crumb and reinforced with polypropylene fiber. Journal of Cleaner Production, 133, 228–234. doi:10.1016/j.jclepro.2016.04.079.
[47] Su, H., Yang, J., Ling, T. C., Ghataora, G. S., & Dirar, S. (2015). Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes. Journal of Cleaner Production, 91, 288–296. doi:10.1016/j.jclepro.2014.12.022.
[48] Ren, F., Mo, J., Wang, Q., & Ho, J. C. M. (2022). Crumb rubber as partial replacement for fine aggregate in concrete: An overview. Construction and Building Materials, 343(128049), 128049. doi:10.1016/j.conbuildmat.2022.128049.
[49] Ismail, N. N. H., & Hamid, N. A. A. (2022). Effect of crumb rubber as partial replacement materials in concrete: a review. Recent Trends in Civil Engineering and Built Environment, 3(1), 476-483. doi:10.30880/rtcebe.2022.03.01.050.
[50] Girskas, G., & Nagrockienė, D. (2017). Crushed rubber waste impact of concrete basic properties. Construction and Building Materials, 140, 36–42. doi:10.1016/j.conbuildmat.2017.02.107.
[51] Islam, M. M. U., Li, J., Roychand, R., & Saberian, M. (2023). Investigation of durability properties for structural lightweight concrete with discarded vehicle tire rubbers: A study for the complete replacement of conventional coarse aggregates. Construction and Building Materials, 369, 130634. doi:10.1016/j.conbuildmat.2023.130634.
[52] Dumne, S. M. (2013). An Experimental Study on Performance of Recycled Tyre Rubber-Filled Concrete. International Journal of Engineering Research & Technology, 2(12), 766–772.
[53] Jayathilakage, R., Hajimoahammadi, A., Pour, H. V., Moreau, D., & Foster, S. (2024). Effects of specimen characteristics, fibre and mix constituents on the acoustic performance of rubberised concrete for traffic noise walls. Materials and Structures/Materiaux et Constructions, 57(8), 190. doi:10.1617/s11527-024-02459-y.
[54] Santos-Ortega, J. L., Fraile-García, E., & Ferreiro-Cabello, J. (2023). Methodology for the environmental analysis of mortar doped with crumb rubber from end-of-life tires. Construction and Building Materials, 399, 132519. doi:10.1016/j.conbuildmat.2023.132519.
[55] Chaturvedy, G. K., Pandey, U. K., & Kumar, H. (2023). Effect of graphene oxide on the microscopic, physical and mechanical characteristics of rubberized concrete. Innovative Infrastructure Solutions, 8(6), 163. doi:10.1007/s41062-023-01133-6.
[56] Abd-Elaal, E. S., Araby, S., Mills, J. E., Youssf, O., Roychand, R., Ma, X., Zhuge, Y., & Gravina, R. J. (2019). Novel approach to improve crumb rubber concrete strength using thermal treatment. Construction and Building Materials, 229, 116901. doi:10.1016/j.conbuildmat.2019.116901.
[57] Kazmi, S. M. S., Munir, M. J., & Wu, Y. F. (2021). Application of waste tire rubber and recycled aggregates in concrete products: A new compression casting approach. Resources, Conservation and Recycling, 167, 1–14. doi:10.1016/j.resconrec.2020.105353.
[58] Sgobba, S., Borsa, M., Molfetta, M., & Marano, G. C. (2015). Mechanical performance and medium-term degradation of rubberised concrete. Construction and Building Materials, 98, 820–831. doi:10.1016/j.conbuildmat.2015.07.095.
[59] Güneyisi, E. (2010). Fresh properties of self-compacting rubberized concrete incorporated with fly ash. Materials and Structures/Materiaux et Constructions, 43(8), 1037–1048. doi:10.1617/s11527-009-9564-1.
[60] Gesoğlu, M., & Güneyisi, E. (2007). Strength development and chloride penetration in rubberized concretes with and without silica fume. Materials and Structures/Materiaux et Constructions, 40(9), 953–964. doi:10.1617/s11527-007-9279-0.
[61] Singaravel, D. A., Veerapandian, P., Rajendran, S., & Dhairiyasamy, R. (2024). Enhancing high-performance concrete sustainability: integration of waste tire rubber for innovation. Scientific Reports, 14(1), 1–17. doi:10.1038/s41598-024-55485-9.
[62] Hiremath, P.N., Jayakesh, K., Rai, R., Raghavendra, N.S., Yaragal, S.C. (2019). Experimental Investigation on Utilization of Waste Shredded Rubber Tire as a Replacement to Fine Aggregate in Concrete. Sustainable Construction and Building Materials. Lecture Notes in Civil Engineering, Springer, Singapore. doi:10.1007/978-981-13-3317-0_49.
[63] Benazzouk, A., Douzane, O., Langlet, T., Mezreb, K., Roucoult, J. M., & Quéneudec, M. (2007). Physico-mechanical properties and water absorption of cement composite containing shredded rubber wastes. Cement and Concrete Composites, 29(10), 732–740. doi:10.1016/j.cemconcomp.2007.07.001.
[64] Jingfu, K., Chuncui, H., & Zhenli, Z. (2008). Strength and shrinkage behaviors of roller-compacted concrete with rubber additives. Materials and Structures, 42(8), 1117–1124. doi:10.1617/s11527-008-9447-x.
[65] Turatsinze, A., & Garros, M. (2008). On the modulus of elasticity and strain capacity of Self-Compacting Concrete incorporating rubber aggregates. Resources, Conservation and Recycling, 52(10), 1209–1215. doi:10.1016/j.resconrec.2008.06.012.
[66] Liu, L., Guan, Q., Zhang, L., Liu, C., Chen, X., & Cai, X. (2022). Evaluation of the compressive-strength reducing behavior of concrete containing rubber aggregate. Cleaner Materials, 4, 100057. doi:10.1016/j.clema.2022.100057.
[67] Siddika, A., Mamun, M. A. Al, Alyousef, R., Amran, Y. H. M., Aslani, F., & Alabduljabbar, H. (2019). Properties and utilizations of waste tire rubber in concrete: A review. Construction and Building Materials, 224, 711–731. doi:10.1016/j.conbuildmat.2019.07.108.
[68] Li, G., Pang, S. S., & Ibekwe, S. I. (2011). FRP tube encased rubberized concrete cylinders. Materials and Structures/Materiaux et Constructions, 44(1), 233–243. doi:10.1617/s11527-010-9622-8.
[69] Abdelmonem, A., El-Feky, M. S., Nasr, E. S. A. R., & Kohail, M. (2019). Performance of high strength concrete containing recycled rubber. Construction and Building Materials, 227, 116660. doi:10.1016/j.conbuildmat.2019.08.041.
[70] Hernández-Olivares, F., Barluenga, G., Bollati, M., & Witoszek, B. (2002). Static and dynamic behaviour of recycled tyre rubber-filled concrete. Cement and Concrete Research, 32(10), 1587–1596. doi:10.1016/S0008-8846(02)00833-5.
[71] Hilal, N. N. (2017). Hardened properties of self-compacting concrete with different crumb rubber size and content. International Journal of Sustainable Built Environment, 6(1), 191–206. doi:10.1016/j.ijsbe.2017.03.001.
[72] Mohammed, B. S., & Adamu, M. (2018). Mechanical performance of roller compacted concrete pavement containing crumb rubber and nano silica. Construction and Building Materials, 159, 234-251. doi:10.1016/j.conbuildmat.2017.10.098.
[73] Khalil, E., Abd-Elmohsen, M., & Anwar, A. M. (2015). Impact Resistance of Rubberized Self-Compacting Concrete. Water Science, 29(1), 45–53. doi:10.1016/j.wsj.2014.12.002.
[74] Eisa, A. S., Elshazli, M. T., & Nawar, M. T. (2020). Experimental investigation on the effect of using crumb rubber and steel fibers on the structural behavior of reinforced concrete beams. Construction and Building Materials, 252, 1–13. doi:10.1016/j.conbuildmat.2020.119078.
[75] Onuaguluchi, O., & Panesar, D. K. (2014). Hardened properties of concrete mixtures containing pre-coated crumb rubber and silica fume. Journal of Cleaner Production, 82, 125–131. doi:10.1016/j.jclepro.2014.06.068.
[76] Gupta, T., Chaudhary, S., & Sharma, R. K. (2016). Mechanical and durability properties of waste rubber fiber concrete with and without silica fume. Journal of Cleaner Production, 112, 702–711. doi:10.1016/j.jclepro.2015.07.081.
[77] Cantillo, V., & Guzmán, A. (2014). Fluid-Pressured Test to Measure Tensile Strength of Concrete. Journal of Materials in Civil Engineering, 26(4), 776–780. doi:10.1061/(asce)mt.1943-5533.0000849.
[78] Mehta, P. K., & Monteiro, P. J. (2006). Concrete microstructure, properties, and materials. McGraw-Hill, Columbus, United States.
[79] Oluokun, F. (1991). Prediction of concrete tensile strength from its compressive strength: an evaluation of existing relations for normal weight concrete. Materials Journal, 88(3), 302-309. doi:10.14359/1942.
[80] Popovics, S. (1967). Relations between various strengths of concrete. Highway Research Record, (210), 67-94.
[81] Liao, W. C., Chen, P. S., Hung, C. W., & Wagh, S. K. (2020). An innovative test method for tensile strength of concrete by applying the strut-and-tie methodology. Materials, 13(12), 1–20. doi:10.3390/ma13122776.
[82] Elzeadani, M., Bompa, D. V., & Elghazouli, A. Y. (2023). Monotonic and cyclic constitutive behaviour of rubberised one-part alkali-activated concrete. Construction and Building Materials, 368, 130414. doi:10.1016/j.conbuildmat.2023.130414.
[83] Jiang, Y., & Zhang, S. (2022). Experimental and analytical study on the mechanical properties of rubberized self-compacting concrete. Construction and Building Materials, 329, 127177. doi:10.1016/j.conbuildmat.2022.127177.
[84] Bompa, D. V., & Elghazouli, A. Y. (2020). Stress–strain response and practical design expressions for FRP-confined recycled tyre rubber concrete. Construction and Building Materials, 237, 117633. doi:10.1016/j.conbuildmat.2019.117633.
[85] Khaloo, A. R., Dehestani, M., & Rahmatabadi, P. (2008). Mechanical properties of concrete containing a high volume of tire-rubber particles. Waste Management, 28(12), 2472–2482. doi:10.1016/j.wasman.2008.01.015.
[86] Noaman, A. T., Abu Bakar, B. H., & Akil, H. M. (2016). Experimental investigation on compression toughness of rubberized steel fibre concrete. Construction and Building Materials, 115, 163–170. doi:10.1016/j.conbuildmat.2016.04.022.
[87] Walid, M., Abdelrahman, A., Kohail, M., & Moustafa, A. (2022). Stress – Strain behavior of rubberized concrete under compressive and flexural stresses. Journal of Building Engineering, 59, 105026. doi:10.1016/j.jobe.2022.105026.
[88] Li, D., Zhuge, Y., Gravina, R., & Mills, J. E. (2018). Compressive stress strain behavior of crumb rubber concrete (CRC) and application in reinforced CRC slab. Construction and Building Materials, 166, 745–759. doi:10.1016/j.conbuildmat.2018.01.142.
[89] Alizadeh, M., Eftekhar, M. R., Asadi, P., & Mostofinejad, D. (2024). Enhancing the mechanical properties of crumb rubber concrete through polypropylene mixing via a pre-mixing technique. Case Studies in Construction Materials, 21, e03569. doi:10.1016/j.cscm.2024.e03569.
[90] Strukar, K., Šipoš, T. K., Dokšanović, T., & Rodrigues, H. (2018). Experimental study of rubberized concrete stress-strain behavior for improving constitutive models. Materials, 11(11), 2245. doi:10.3390/ma11112245.
[91] Hassanli, R., Youssf, O., & Mills, J. E. (2017). Experimental investigations of reinforced rubberized concrete structural members. Journal of Building Engineering, 10, 149–165. doi:10.1016/j.jobe.2017.03.006.
[92] Liu, H., Wang, X., Jiao, Y., & Sha, T. (2016). Experimental investigation of the mechanical and durability properties of crumb rubber concrete. Materials, 9(3). doi:10.3390/ma9030172.
[93] Ul Aleem, M. A., Siddique, M. S., Farooq, S. H., Usman, M., Ahsan, M. H., Hussain, M., & Hanif, A. (2022). Axial compressive behavior of concrete incorporating crumb rubber pretreated with waste quarry dust. Journal of Building Engineering, 59, 105086. doi:10.1016/j.jobe.2022.105086.
[94] ACI Committee 318-19 (2019) ACI 318-19: Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19). American Concrete Institute, Farmington Hills, United States. doi:10.14359/51716937.
[95] Sideris, K. K., Manita, P., & Sideris, K. (2004). Estimation of ultimate modulus of elasticity and Poisson ratio of normal concrete. Cement and Concrete Composites, 26(6), 623–631. doi:10.1016/S0958-9465(03)00084-2.
[96] Wang, Z., Gao, Z., Wang, Y., Cao, Y., Wang, G., Liu, B., & Wang, Z. (2015). A new dynamic testing method for elastic, shear modulus and Poisson’s ratio of concrete. Construction and Building Materials, 100, 129–135. doi:10.1016/j.conbuildmat.2015.09.060.
[97] Chayaboot, K., Boonpichetvong, M., Pannachet, T., Sata, V., & Chintanapakdee, C. (2024). Seismic Performance of Infilled Reinforced Concrete Frame with Crumb Rubber Mortar Wall Panel. Civil Engineering Journal (Iran), 10(2), 468–488. doi:10.28991/CEJ-2024-010-02-09.
[98] Alaloul, W. S., Musarat, M. A., A Tayeh, B., Sivalingam, S., Rosli, M. F. B., Haruna, S., & Khan, M. I. (2020). Mechanical and deformation properties of rubberized engineered cementitious composite (ECC). Case Studies in Construction Materials, 13, e00385. doi:10.1016/j.cscm.2020.e00385.
[99] Xie, J. H., Guo, Y. C., Liu, L. S., & Xie, Z. H. (2015). Compressive and flexural behaviours of a new steel-fibre-reinforced recycled aggregate concrete with crumb rubber. Construction and Building Materials, 79, 263–272. doi:10.1016/j.conbuildmat.2015.01.036.
[100] Nematzadeh, M., Hosseini, S. A., & Ozbakkaloglu, T. (2021). The combined effect of crumb rubber aggregates and steel fibers on shear behavior of GFRP bar-reinforced high-strength concrete beams. Journal of Building Engineering, 44, 102981. doi:10.1016/j.jobe.2021.102981.
[101] Onuaguluchi, O., & Banthia, N. (2017). Durability performance of polymeric scrap tire fibers and its reinforced cement mortar. Materials and Structures, 50(2), 158. doi:10.1617/s11527-017-1025-7.
[102] Moolchandani, K., Sharma, A., & Kishan, D. (2024). Enhancing Concrete Performance with Crumb Rubber and Waste Materials: A Study on Mechanical and Durability Properties. Buildings, 14(1), 161. doi:10.3390/buildings14010161.
[103] Alsaif, A., Koutas, L., Bernal, S. A., Guadagnini, M., & Pilakoutas, K. (2018). Mechanical performance of steel fibre reinforced rubberised concrete for flexible concrete pavements. Construction and Building Materials, 172, 533–543. doi:10.1016/j.conbuildmat.2018.04.010.
[104] Bouzid, H., Rabia, B., & Daouadji, T.H. (2023). Curvature Ductility of Confined HSC Columns. Proceedings of the 2nd International Conference on Innovative Solutions in Hydropower Engineering and Civil Engineering. HECE 2022. Lecture Notes in Civil Engineering. Springer, Singapore. doi:10.1007/978-981-99-1748-8_21.
[105] Hassanli, R., Youssf, O., Mills, J. E., Karim, R., & Vincent, T. (2018). Performance of segmental self-centering rubberized concrete columns under different loading directions. Journal of Building Engineering, 20, 285–302. doi:10.1016/j.jobe.2018.08.003.
[106] Kaushik, A., Prakash, G., & Rajput, A. (2022). Influence of crumb rubber on the response of concrete beams against low velocity impact. Construction and Building Materials, 347, 128614. doi:10.1016/j.conbuildmat.2022.128614.
[107] Husem, M., & Pul, S. (2007). Investigation of stress-strain models for confined high strength concrete. Sadhana - Academy Proceedings in Engineering Sciences, 32(3), 243–252. doi:10.1007/s12046-007-0021-y.
[108] Akbari, M., Tahamtan, M. H. N., Fallah-Valukolaee, S., Herozi, M. R. Z., & Shirvani, M. A. (2022). Investigating fracture characteristics and ductility of lightweight concrete containing crumb rubber by means of WFM and SEM methods. Theoretical and Applied Fracture Mechanics, 117(103148). doi:10.1016/j.tafmec.2021.103148.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.