Assessment of Soil Shear Strength Parameters: Insights from Direct Shear and Direct Simple Shear Testing
Downloads
The direct shear test is widely used to determine shear strength parameters ( ) of soil. However, its validity has been questioned due to several issues, such as uneven stress distribution, the creation of a predetermined failure plane, lateral constraints, difficulties in controlling drainage conditions, and limitations in measuring pore water pressure, which is essential for understanding soil behaviour under different conditions over time. This study addresses these concerns by comparing the shear strength parameters obtained from a direct shear test (DST) and a direct, simple shear test (DSST). To further explore these issues, a fully automated universal shear device was used to perform shear tests on clay, sand, and composite soil (clay + sand), covering both consolidated and shear phases of DST and DSST. Specimens were fabricated at their optimal moisture content, and the composite soil was developed by mixing clay with sand in proportions of 10%, 25%, 50%, and 75% of the mass of sand. This research aims to clarify the relationship between these two testing methodologies through comprehensive testing and to enhance the knowledge of the principal mechanism of the 2 tests. The findings revealed that the DST yielded higher shear strength values than the DSST results. It was also observed that the friction angle of sand specimens generally decreased with the addition of clay for both tests. Additionally, the the kaolinite soil in DST and DSST, decreased in the sand as the clay contents increased.
Downloads
[1] Aneke, F. I., Onyelowe, K. C., Ebid, A. M., Nwobia, L. I., & Adu, J. T. (2022). Predictive models of swelling stress—a comparative study between BP- and GRG-ANN. Arabian Journal of Geosciences, 15(17), 1438. doi:10.1007/s12517-022-10706-1.
[2] Ukkurthi, V. R., Prasad, K. N., Reddy, B. S., & Babu, J. S. (2023). Prediction of undrained shear strength characteristics of compacted residual soils. AIP Conference Proceedings, 2754(1), 0161126. doi:10.1063/5.0161126.
[3] Aneke, F. I., Mostafa, M. M. H., & El Kamash, W. (2021). Pre-compression and capillarity effect of treated expansive subgrade subjected to compressive and tensile loadings. Case Studies in Construction Materials, 15, 575. doi:10.1016/j.cscm.2021.e00575.
[4] Ikechukwu, A. F., Hassan, M. M., & Moubarak, A. (2021). Swelling stress effects on shear strength resistance of subgrades. International Journal of Geotechnical Engineering, 15(8), 939–949. doi:10.1080/19386362.2019.1656445.
[5] Amšiejus, J., Dirgeliene, N., Norkus, A., & Skuodis, Š. (2014). Comparison of sandy soil shear strength parameters obtained by various construction direct shear apparatuses. Archives of Civil and Mechanical Engineering, 14(2), 327–334. doi:10.1016/j.acme.2013.11.004.
[6] Aneke, I. F., Shamshad, A., Denis, K., & Siddiqua, S. (2024). Enhancing Dynamic Shear Resistance and Efficient Micro-Void Reduction of Expansive Soil Using Activated Nano-Desilicated Fly Ash. International Journal of Geosynthetics and Ground Engineering, 10(4), 72. doi:10.1007/s40891-024-00582-y.
[7] Grognet, M. (2011). The Boundary Conditions in Direct Simple Shear Tests, Development for Peat Testing at Low Vertical Stress. Master Thesis, Delft University of Technology, Delft, Netherlands.
[8] Kjellman, W. (1951). Testing the shear strength of clay in Sweden. Geotechnique, 2(3), 225–232. doi:10.1680/geot.1951.2.3.225.
[9] Zeraati-Shamsabadi, M., & Sadrekarimi, A. (2025). A DEM study on the effects of specimen and particle sizes on direct simple shear tests. Granular Matter, 27(2), 36. doi:10.1007/s10035-025-01513-y.
[10] Ahmad, M., Al Zubi, M., Almujibah, H., Sabri Sabri, M. M., Mustafvi, J. B., Haq, S., Ouahbi, T., & Alzlfawi, A. (2025). Improved prediction of soil shear strength using machine learning algorithms: interpretability analysis using SHapley Additive exPlanations. Frontiers in Earth Science, 13, 1542291. doi:10.3389/feart.2025.1542291.
[11] Baxter, C. D. P., Bradshaw, A. S., Ochoa-Lavergne, M., & Hankour, R. (2010). DSS Test Results Using Wire-Reinforced Membranes and Stacked Rings. Geo Florida, 600–607. doi:10.1061/41095(365)57.
[12] Onyelowe, K. C., Ebid, A. M., Aneke, F. I., & Nwobia, L. I. (2023). Different AI Predictive Models for Pavement Subgrade Stiffness and Resilient Deformation of Geopolymer Cement-Treated Lateritic Soil with Ordinary Cement Addition. International Journal of Pavement Research and Technology, 16(5), 1113–1134. doi:10.1007/s42947-022-00185-8.
[13] Zhang, H. Y., Li, M., Wells, R. R., & Liu, Q. J. (2019). Effect of soil water content on soil detachment capacity for coarse-and fine-grained soils. Soil Science Society of America Journal, 83(3), 697-706. doi:10.2136/sssaj2018.05.0208.
[14] Aneke, I., Mostafa Hassan, M., & Moubarak, A. (2019). Shear strength behavior of stabilized unsaturated expansive subgrade soils for highway backfill. Bituminous Mixtures and Pavements VII, 111–122, CRC Press, CRC Press, United States. doi:10.1201/9781351063265-18.
[15] Zhang, H., Hu, J., Li, Z., Zheng, B., Jin, H., Chou, Y., Li, H., Lu, M., & Yang, S. (2025). Measurement and modeling of excess pore-water pressure in warm saturated frozen soil based on dynamic loading effect. Alexandria Engineering Journal, 110, 132–144. doi:10.1016/j.aej.2024.10.007.
[16] Carraro, J. A. H. (2017). Analysis of simple shear tests with cell pressure confinement. Geomechanics and Geoengineering, 12(3), 169–180. doi:10.1080/17486025.2016.1193635.
[17] Dabeet, A., Wijewickreme, D., & Byrne, P. (2015). Evaluation of stress strain non-uniformities in the laboratory direct simple shear test specimens using 3D discrete element analysis. Geomechanics and Geoengineering, 10(4), 249–260. doi:10.1080/17486025.2014.979889.
[18] Wroth, C. P. (1984). The interpretation of in situ soil tests. Géotechnique, 34(4), 449–489. doi:10.1680/geot.1984.34.4.449.
[19] Li, Y., Chan, L. S., Yeung, A. T., & Xiang, X. (2013). Effects of test conditions on shear behaviour of composite soil. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 166(3), 310–320. doi:10.1680/geng.11.00013.
[20] S. Gundersen, A., C. Hansen, R., Lunne, T., L’Heureux, J.-S., & O. Strandvik, S. (2019). Characterization and engineering properties of the NGTS Onsøy soft clay site. AIMS Geosciences, 5(3), 665–703. doi:10.3934/geosci.2019.3.665.
[21] Hassona, F., Abu Bakr, A. M., Abdelmalak, R. I., & Abbas, A. A. (2025). Estimation of Shear Strength Parameters For C-Phi Soils. Journal of Advanced Engineering Trends, 44(1), 74-81.
[22] ASTM D1140-00. (2017). Standard Test Methods for Amount of Material in Soils Finer Than the No. 200 (75-um) Sieve. ASTM International, Pennsylvania, United States. doi:10.1520/D1140-00.
[23] Mitchell, J. K., & Soga, K. (2005). Fundamentals of soil behavior (3rd Ed.). John Wiley & Sons Inc., Hoboken, United States.
[24] ASTM D3080/D3080M-11. (2020). Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions. ASTM International, Pennsylvania, United States. doi:10.1520/D3080_D3080M-11.
[25] ASTM D6528-07. (2017). Standard Test Method for Consolidated Undrained Direct Simple Shear Testing of Cohesive Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D6528-07.
[26] Ikechukwu, A. F., Hassan, M. M., & Moubarak, A. (2021). Resilient modulus and microstructure of unsaturated expansive subgrade stabilized with activated fly ash. International Journal of Geotechnical Engineering, 15(8), 915–938. doi:10.1080/19386362.2019.1656919.
[27] Hidayat, R. F., Kiyota, T., Umar, M., Rosiyani, & Nawir, H. (2022). Flow deformation characteristics of sandy soils under constant shear stress with water inflow. Soils and Foundations, 62(3), 101128. doi:10.1016/j.sandf.2022.101128.
[28] Gylland, A. S., Jostad, H. P., & Nordal, S. (2014). Experimental study of strain localization in sensitive clays. Acta Geotechnica, 9(2), 227–240. doi:10.1007/s11440-013-0217-8.
[29] Acharya, B., & Airey, D. (2017). Effect of Specimen Confinement Method on Simple Shear Test of Clay. Advances in Laboratory Testing and Modelling of Soils and Shales (ATMSS), ATMSS 2017, Springer Series in Geomechanics and Geoengineering, Springer, Cham, Switzerland. doi:10.1007/978-3-319-52773-4_28.
[30] Huang, D., & Zhu, T. (2019). Experimental study on the shear mechanical behavior of sandstone under normal tensile stress using a new double-shear testing device. Rock Mechanics and Rock Engineering, 52(9), 3467-3474. doi:10.1007/s00603-019-01762-3.
[31] Wang, J. P., Ling, H. I., & Mohri, Y. (2007). Stress-Strain Behavior of a Compacted Sand-Clay Mixture. Soil Stress-Strain Behavior: Measurement, Modeling and Analysis. Solid Mechanics and Its Applications, 146. Springer, Dordrecht, Netherlands. doi:10.1007/978-1-4020-6146-2_31.
[32] Zhao, Y. R., Xie, Q., Wang, G. L., Zhang, Y. J., Zhang, Y. X., & Su, W. (2014). A study of shear strength properties of municipal solid waste in Chongqing landfill, China. Environmental Science and Pollution Research, 21(22), 12605–12615. doi:10.1007/s11356-014-3183-2.
[33] Baig, A. A., Baig, N. A., & Baig, S. A. (2023). The Effect of Dry Density on Shear Strength Parameters of Ravi, Chenab and Lawrencepur Sand in Dry and Saturated Conditions. SSRN Electronic Journal, 4644744. doi:10.2139/ssrn.4644744.
[34] Natarajan, K., Siva Sankara Reddy, D.V. (2022). Influence of Density and Degree of Saturation on the Shear Strength Characteristics of Marine Sands. Ground Characterization and Foundations. Lecture Notes in Civil Engineering, Springer, Singapore. doi:10.1007/978-981-16-3383-6_6.
[35] Narayan, S., Maharaj, R. R., Kumar, R., Kishore, T., Salahuddin, M., & Mamun, K. (2024). Comparative Evaluation of Compressive Strength in Earth Blocks Enhanced with Natural Fibers. Civil Engineering Journal, 10(10), 3322–3338. doi:10.28991/CEJ-2024-010-10-013.
[36] Skuodis, S., & Norkus, A. (2014). Influence of test quantity on loose sand shearing strength parameters. Proceedings of the International Conference on Innovative Materials, Structures and Technologies, 167. doi:10.7250/iscconstrs.2014.28.
[37] Onyelowe, K. C., Eidgahee, D. R., Jahangir, H., Aneke, F. I., & Nwobia, L. I. (2023). Forecasting Shear Parameters, and Sensitivity and Error Analyses of Treated Subgrade Soil. Transportation Infrastructure Geotechnology, 10(3), 448–473. doi:10.1007/s40515-022-00225-7.
[38] Vithana, S. B., Nakamura, S., Gibo, S., Yoshinaga, A., & Kimura, S. (2012). Correlation of large displacement drained shear strength of landslide soils measured by direct shear and ring shear devices. Landslides, 9(3), 305–314. doi:10.1007/s10346-011-0301-9.
[39] Kong, Z., Guo, Y., Mao, S., & Zhang, W. (2023). Experimental Study on Shear Strength Parameters of Round Gravel Soils in Plateau Alluvial-Lacustrine Deposits and Its Application. Sustainability (Switzerland), 15(5), 3954. doi:10.3390/su15053954.
[40] Aneke, F. I., & Onyelowe, K. C. (2022). Applications of preloading pressure on expansive subgrade treated with nano-geopolymer binder for cyclic crack resistance. Nanotechnology for Environmental Engineering, 7(3), 593–607. doi:10.1007/s41204-022-00250-4.
[41] Dafalla, M. A. (2013). Effects of clay and moisture content on direct shear tests for clay-sand mixtures. Advances in Materials Science and Engineering, 2013. doi:10.1155/2013/562726.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















