Sustainable Interlocking Blocks Containing Sugarcane Bagasse Ash: Structural Integrity, Cost Efficiency, and Environmental Benefits

Nitirach Sa-nguanduan, Kamol Amornfa

Abstract


This study aimed to evaluate the potential use of sugarcane bagasse ash (SCBA) as a partial replacement for Portland cement in interlocking blocks to enhance sustainability, reduce costs, and mitigate environmental impacts. The research objectives included assessing the compressive strength, water absorption, durability, microstructural characteristics, cost-effectiveness, and carbon footprint of SCBA-modified interlocking blocks. Experiments followed established standards, using various SCBA replacement levels (5–30%), with performance evaluated through mechanical testing, SEM analysis, cost assessment, and life cycle carbon footprint calculation. The findings demonstrated that interlocking blocks with 20% SCBA substitution maintained structural integrity, achieving a compressive strength of over 7 MPa, with acceptable water absorption and excellent durability. Cost analysis showed savings of up to 7.53%, while environmental assessment revealed carbon emission reductions of 17.99%. Microstructural analysis confirmed the presence of calcium silicate hydrate, supporting strength development. The study also introduced the SCOPEC framework (Selection of materials, Composition and mix optimization, Operational performance, Production consistency, Economic feasibility, and Carbon reduction), offering practical guidance for SCBA utilization in sustainable block production. This research contributes a novel, scalable solution to reduce cement consumption, enhance resource efficiency, and promote eco-friendly construction materials for affordable housing projects.

 

Doi: 10.28991/CEJ-2025-011-05-024

Full Text: PDF


Keywords


Sustainable Construction; Sugarcane Bagasse Ash; Interlocking Blocks; Cement Replacement; Pozzolanic Materials; Carbon Footprint Reduction; Cost-Effective Masonry.

References


Hussien, N. T., & Oan, A. F. (2022). The use of sugarcane wastes in concrete. Journal of Engineering and Applied Science, 69(1), 31. doi:10.1186/s44147-022-00076-6.

Kumar, N., & Barbato, M. (2022). Effects of sugarcane bagasse fibers on the properties of compressed and stabilized earth blocks. Construction and Building Materials, 315, 125552. doi:10.1016/j.conbuildmat.2021.125552.

Thennarasan Latha, A., & Murugesan, B. (2024). Compressed stabilised earth block synergistically valorising municipal solid waste incinerator bottom ash and sisal fiber: Strength, durability and life cycle analysis. Construction and Building Materials, 441, 137514. doi:10.1016/j.conbuildmat.2024.137514.

James, J., & Pandian, P. K. (2017). A Short Review on the Valorisation of Sugarcane Bagasse Ash in the Manufacture of Stabilized/Sintered Earth Blocks and Tiles. Advances in Materials Science and Engineering, 2017, 1706893. doi:10.1155/2017/1706893.

Abbas, S., Hameed, R., Baig, M. A., Kashif, M., & Shaukat, S. (2024). Mechanical performance of coal ash based interlocking bricks wall panel: A sustainable and viable solution. Journal of Building Engineering, 95, 110288. doi:10.1016/j.jobe.2024.110288.

TISTR. (2025). Technology of Interlocking Blocks. Thailand Institute of Scientific and Technological Research (TISTR), Bangkok, Thailand. (In Thai).

A Sunardi, S., Ariawan, D., Surojo, E., Prabowo, A. R., Ghanbari-Ghazijahani, T., Wibowo, C. H., & Akbar, H. I. (2024). Tribological Performance of Polymer Composite Modified with Calcined Eggshell Particles Post High-Temperature Exposure. Emerging Science Journal, 8(4), 1280-1292. doi:10.28991/ESJ-2024-08-04-03.

Gudia, S. E. L., Go, A. W., Giduquio, M. B., Juanir, R. G., Jamora, J. B., Gunarto, C., & Tabañag, I. D. F. (2023). Sugarcane bagasse ash as a partial replacement for cement in paste and mortar formulation – A case in the Philippines. Journal of Building Engineering, 76, 107221. doi:10.1016/j.jobe.2023.107221.

Yarra, A., Nakkeeran, G., Roy, D., & Alaneme, G. U. (2025). Evaluation of SCBA-replaced cement for carbon credits and reduction in CO2 emissions. Discover Applied Sciences, 7(2), 114. doi:10.1007/s42452-025-06487-3.

Fairbairn, E. M. R., Americano, B. B., Cordeiro, G. C., Paula, T. P., Toledo Filho, R. D., & Silvoso, M. M. (2010). Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits. Journal of Environmental Management, 91(9), 1864–1871. doi:10.1016/j.jenvman.2010.04.008.

Ainomugisha, S., Kibwami, N., Racheal, W., Adubango, E. N., J Matovu, M., & Manga, M. (2025). Effect of sugarcane bagasse ash on eco-friendly blended cement production: Physicochemical, mechanical, and microstructure properties. Case Studies in Construction Materials, 22, 4141. doi:10.1016/j.cscm.2024.e04141.

Khan, M. A., Zhang, B., Ahmad, M., Niekurzak, M., Khan, M. S., Sabri Sabri, M. M., & Chen, W. (2025). Optimizing concrete sustainability with bagasse ash and stone dust and its impact on mechanical properties and durability. Scientific Reports, 15(1), 1385. doi:10.1038/s41598-025-85363-x.

Sa-nguanduan, N., Amornfa, K., & Dechkrong, P. (2024). Consistency of Chemical Composition of Bagasse Ash and Application in Interlocking Blocks. Journal of Science and Technology Kasetsart University, 13(1), 48-60.

Jahanzaib Khalil, M., Aslam, M., & Ahmad, S. (2021). Utilization of sugarcane bagasse ash as cement replacement for the production of sustainable concrete – A review. Construction and Building Materials, 270, 121371. doi:10.1016/j.conbuildmat.2020.121371.

Jordan, R. A., Da Costa, M. V., Martins, E. A. S., Rosa, M. A., & Petrauski, A. (2019). Manufacture of soil-cement bricks with the addition of sugarcane bagasse ash. Engenharia Agricola, 39(1), 26–31. doi:10.1590/1809-4430-Eng.Agric.v39n1p26-31/2019.

Alvarenga, K. P., & Cordeiro, G. C. (2024). Evaluating sugarcane bagasse fly ash as a sustainable cement replacement for enhanced performance. Cleaner Engineering and Technology, 20, 100751. doi:10.1016/j.clet.2024.100751.

Subedi, S., Arce, G. A., Hassan, M. M., Barbato, M., Gutierrez-Wing, M. T., & Kumar, N. (2024). Louisiana’s Sugarcane Bagasse Ash Utilization for Partial Cement Replacement in Concrete for Transportation Infrastructure Applications. International Journal of Pavement Research and Technology, 17(3), 595–614. doi:10.1007/s42947-022-00258-8.

Rihan, M. A. M., Onchiri, R. O., Gathimba, N., & Sabuni, B. (2024). Mechanical and Microstructural Properties of Geopolymer Concrete Containing Fly Ash and Sugarcane Bagasse Ash. Civil Engineering Journal (Iran), 10(4), 1292–1309. doi:10.28991/CEJ-2024-010-04-018.

Onsongo, S. K., Olukuru, J., Munyao, O. M., & Mwabonje, O. (2025). The role of agricultural ashes (rice husk ash, coffee husk ash, sugarcane bagasse ash, palm oil fuel ash) in cement production for sustainable development in Africa. Discover Sustainability, 6(1), 62. doi:10.1007/s43621-025-00841-6.

Akila, D., Pal, S., Sarkar, B., Jayalaksshmi, S., Muthaiyah, S., & Anbananthen, K. S. M. (2024). Multi-Criteria Decision-Making Model to Achieve Sustainable Developmental Goals in Industry 4.0 for Smart City Infrastructure. HighTech and Innovation Journal, 5(4), 1135-1153. doi:10.28991/HIJ-2024-05-04-018.

Aouf, G., Alhakim, G., & Jaber, L. (2024). Utilizing Recycled Rubber and Municipal Waste Incineration Fly Ash in Cement-Stabilized Clayey Soils. Civil Engineering Journal, 10(11), 3721-3737. doi:10.28991/CEJ-2024-010-11-017.

Amornfa, K. (2016). Engineering Properties Improvement of Interlocking Block by Mixing with Sand. Naresuan University Engineering Journal, 11(1), 67–74.

ASTM C618-03. (2017). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-03.

TIS-57. (1990). Hollow Load-Bearing Concrete Masonry Units. Thailand Industrial Standards Institute (TISI), Bangkok, Thailand. (In Thai).

TIS-109. (1974). Sampling and Testing Concrete Masonry Units. Thailand Industrial Standards Institute (TISI), Bangkok, Thailand. (In Thai).

ASTM D559-03. (2012). Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixtures (Withdrawn 2012). ASTM International, Pennsylvania, United States. doi:10.1520/D0559-03.

ASTM E986-04(2017). (2024). Standard Practice for Scanning Electron Microscope Beam Size Characterization. ASTM International, Pennsylvania, United States. doi:10.1520/E0986-04R17.

ISO 14067:2018. (2018). Greenhouse gases — Carbon footprint of products — Requirements and guidelines for quantification. International Organization for Standardization (ISO), Geneva, Switzerland.

James, J., Pandian, P. K., Deepika, K., Manikanda Venkatesh, J., Manikandan, V., & Manikumaran, P. (2016). Cement stabilized soil blocks admixed with sugarcane bagasse ash. Journal of Engineering (United Kingdom), 2016(1), 7940239. doi:10.1155/2016/7940239.

TGO. (2019). Thailand Greenhouse Gas Emission Factor Report. Thailand Greenhouse Gas Management Organization (TGO), Bangkok, Thailand. (In Thai).

MOI. (2019). Industrial Greenhouse Gas Emission Report. Ministry of Industry (MOI), Bangkok, Thailand. (In Thai).

MTEC. (2019). National Greenhouse Gas Emission Data. National Metal and Materials Technology Center (MTEC), Bangkok, Thailand. (In Thai).


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-05-024

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Nitirach Sa-nguanduan, Kamol Amornfa

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message