Design a No-Fine Concrete Using Epoxy in Pavement

Hadel Obaidi, Nada M. Fawzi, Haneen A. Mohammed

Abstract


No-fines concrete is an advanced pavement material known for its strong drainage capabilities, making it a widely used rigid road surface. With growing demand for reduced cement content due to industrial advancements, researchers have explored epoxy resin as a partial or total cement replacement. This study examines the mechanical properties of no-fines concrete with varying epoxy replacement levels and applies KENSLAB analysis for pavement thickness design. Seven concrete mixes were prepared with epoxy replacing cement at 100%, 95%, 75%, 55%, 35%, and 15%. Mechanical tests, including compressive strength, flexural strength, modulus of elasticity, bulk density, water absorption, and durability (wet-dry), were conducted after 7 and 28 days of curing. Additionally, the PerviousPave system was used to optimize pavement integrity by adjusting slab thickness, subbase layer thickness, and stormwater management. Results showed that the 55% and 100% epoxy replacement mixes performed best. Compressive strength increased by 2.44% and 33.44%, respectively, at 28 days compared to the reference mix. Flexural strength reached 5.99 MPa for 100% epoxy and 4.69 MPa for 55% epoxy at 28 days. Structural analysis demonstrated that increased slab and subgrade stiffness reduced tensile stresses, improving pavement durability and extending service life. These findings highlight the potential of epoxy-modified no-fines concrete for enhanced pavement performance in traffic and environmental conditions.

 

Doi: 10.28991/CEJ-2025-011-05-021

Full Text: PDF


Keywords


No-Fine Concrete; Pavement; KENSLAB; Mechanical Properties; Durability Test; Structural Design.

References


Shetty, M.S. (2005) Chapter 12: Special Concrete and Concreting Methods. Concrete Technology Theory and Practice. Chand & Company Ltd., New Delhi, India.

Kazem, D. J., & Fawzi, N. M. (2024). Effect of Sustainable Materials on Some Properties of Pervious Concrete. Engineering, Technology and Applied Science Research, 14(3), 14039–14043. doi:10.48084/etasr.7193.

Fawzi, R. Q., & Awad, H. K. (2023). The Influence of Polypropylene Fiber and Silica Fume on the Mechanical Properties of No-Fine Concrete with Recycled Aggregate. E3S Web of Conferences, 427(02002). doi:10.1051/e3sconf/202342702002.

Wang, Y., Sun, M., & Song, B. (2017). Public perceptions of and willingness to pay for sponge city initiatives in China. Resources, Conservation and Recycling, 122, 11–20. doi:10.1016/j.resconrec.2017.02.002.

Zhong, R., Leng, Z., & Poon, C. sun. (2018). Research and application of pervious concrete as a sustainable pavement material: A state-of-the-art and state-of-the-practice review. Construction and Building Materials, 183, 544–553. doi:10.1016/j.conbuildmat.2018.06.131.

Ghabezloo, S., Sulem, J., Guédon, S., Martineau, F., & Saint-Marc, J. (2008). Poromechanical behaviour of hardened cement paste under isotropic loading. Cement and Concrete Research, 38(12), 1424–1437. doi:10.1016/j.cemconres.2008.06.007.

Afzal, G., & Rasool, T. (2025). Innovative pavement composite using graphene oxide in pervious concrete: durability performance analysis. Road Materials and Pavement Design, 1–36. doi:10.1080/14680629.2025.2463426.

ACI 522-R. (2010). Report on Pervious Concrete. American Concrete Institute (ACI), Michigan, United States.

Shen, P., Lu, J. X., Zheng, H., Liu, S., & Sun Poon, C. (2021). Conceptual design and performance evaluation of high strength pervious concrete. Construction and Building Materials, 269, 121342. doi:10.1016/j.conbuildmat.2020.121342.

Lu, J. X., Yan, X., He, P., & Poon, C. S. (2019). Sustainable design of pervious concrete using waste glass and recycled concrete aggregate. Journal of Cleaner Production, 234, 1102–1112. doi:10.1016/j.jclepro.2019.06.260.

Alwaan, N. M. (2018). Effect of steel fiber on properties of high performance no-fine concrete. International Journal of Engineering & Technology, 7(4.37), 30-32. doi:10.14419/ijet.v7i4.37.23609

Natarajan, S., Pillai, N. N., & Murugan, S. (2019). Experimental investigations on the properties of epoxy-resin-bonded cement concrete containing sea sand for use in unreinforced concrete applications. Materials, 12(4), 645. doi:10.3390/ma12040645.

Albayati, A. H., Oukaili, N. K., Obaidi, H., & Alatta, B. M. (2024). Mitigating Reflection Cracking in Asphalt Concrete Overlays with ECC and Geotextile. Engineering, Technology and Applied Science Research, 14(1), 12850–12860. doi:10.48084/etasr.6650.

Obaidi, H. (2020). Mechanical and sustainability assessment of induction heatable asphalt tiles and asphalt pellets in road maintenance. IOP Conference Series: Materials Science and Engineering, 881(1), 12174. doi:10.1088/1757-899X/881/1/012174.

Hashim, S., Al-Mosawe, H., & Mohammed, H. (2023). The Influence of Using Recycled Asphalt Pavement and Crumbed Rubber on Asphalt Pavement: A Review. Al-Nahrain Journal for Engineering Sciences, 26(2), 74–82. doi:10.29194/njes.26020074.

Mustapha, I. B., Abdulkareem, Z., Abdulkareem, M., & Ganiyu, A. (2024). Predictive modeling of physical and mechanical properties of pervious concrete using XGBoost. Neural Computing and Applications, 36(16), 9245–9261. doi:10.1007/s00521-024-09553-w.

Fan, Y., Wu, Y., Chen, H., Liu, S., Huang, W., Wang, H., & Yang, J. (2022). Performance Evaluation and Structure Optimization of Low-Emission Mixed Epoxy Asphalt Pavement. Materials, 15(18), 6472. doi:10.3390/ma15186472.

Zhu, Z., & Al-Qadi, I. L. (2024). Development of a full-Scale approach to predict overlay reflective crack. International Journal of Pavement Engineering, 25(1), 2310095. doi:10.1080/10298436.2024.2310095.

El-Hawary, M. M., & Abdul-Jaleel, A. (2010). Durability assessment of epoxy modified concrete. Construction and Building Materials, 24(8), 1523–1528. doi:10.1016/j.conbuildmat.2010.02.004.

Jokhio, G. A., Gul, Y., & Abu-Tair, A. (2021). Using Epoxy Resin as Partial Cement Replacement in Concrete with Silica Sand as Fine Aggregate. Civil Engineering and Architecture, 9(5), 1513–1529. doi:10.13189/cea.2021.090523.

Guo, S.-Y., Zhang, X., Chen, J.-Z., Mou, B., Shang, H.-S., Wang, P., Zhang, L., & Ren, J. (2020). Mechanical and interface bonding properties of epoxy resin reinforced Portland cement repairing mortar. Construction and Building Materials, 264, 120715. doi:10.1016/j.conbuildmat.2020.120715.

Mahdi, Z. H., Obaidi, H., & Rahman, E. A. (2024). Study of some properties of sustainable lightweight concrete-based on epoxy, scoria and charcoal. AIP Conference Proceedings, 3105(1), 0212242. doi:10.1063/5.0212242.

Modesti, L. A., Vargas, A. S. de, & Schneider, E. L. (2020). Repairing concrete with epoxy adhesives. International Journal of Adhesion and Adhesives, 101, 102645. doi:10.1016/j.ijadhadh.2020.102645.

Xiang, Q., & Xiao, F. (2020). Applications of epoxy materials in pavement engineering. Construction and Building Materials, 235, 117529. doi:10.1016/j.conbuildmat.2019.117529.

Spee, T., Van Duivenbooden, C., & Terwoert, J. (2006). Epoxy resins in the construction industry. Annals of the New York Academy of Sciences, 1076, 429–438. doi:10.1196/annals.1371.010.

Al-sallami, Z. H. A., Marshdi, Q. S. R., & Mukheef, R. A.-A.-H. (2019). Effect of cement replacement by fly ash and epoxy on the properties of pervious concrete. Asian Journal of Civil Engineering, 21(1), 49–58. doi:10.1007/s42107-019-00183-5.

Abbas, Z. H., Hassan, M. S., & Gorgis, I. N. (2024). Effects of nano montmorillonite clay modified epoxy adhesive on confinement efficiency of adhesively bonded CFRP stay-in-place formwork column. Case Studies in Construction Materials, 20, e03378. doi:10.1016/j.cscm.2024.e03378.

Nadali, F., Sedighi, M., Kahrizi, E., & Rajaee, T. (2025). Experimental Study on Enhancing the Performance of Porous Concrete with Polymer Adsorbents Using Kriging, Artificial Neural Network, and Taguchi Methodologies. International Journal of Pavement Research and Technology, 1–22. doi:10.1007/s42947-025-00507-6.

ACPA. (2011). PerviousPave. American Concrete Pavement Association, Illinois, United States. Available online: https://www.acpa.org/perviouspave/ (accessed on March 2025).

Vancura, M., MacDonald, K., & Khazanovich, L. (2011). Structural analysis of pervious concrete pavement. Transportation Research Record, 2226, 13–20. doi:10.3141/2226-02.

AlShareedah, O., Mostofa Haider, M., & Nassiri, S. (2020). Effect of Temperature Difference on the Thickness Design of Pervious Concrete Pavements. Transportation Research Record, 2674(11), 263–277. doi:10.1177/0361198120943591.

AlShareedah, O., & Nassiri, S. (2021). Pervious concrete mixture optimization, physical, and mechanical properties and pavement design: A review. Journal of Cleaner Production, 288, 125095. doi:10.1016/j.jclepro.2020.125095.

No.5/1984. (1984). Portland Cement. Iraqi standard specification, Central Organization for Standardization and Quality Control, Baghdad, Iraq.

SCRB/R9. (2003). Hot-Mix Asphalt Concrete Pavement, Revised Edition. Section R/9, General Specification for Roads and Bridges, Baghdad, Iraq.

ASTM C192/C192M-02. (2017). Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International, Pennsylvania, United States. doi:10.1520/C0192_C0192M-02.

BS EN 12390-7. (2009). Testing hardened concrete. Part 7: Density of hardened concrete. British Standards Institution (BSI), London, United Kingdom.

B.S. 1881-122. (1983). Testing Concrete Method for Determination of Water Absorption. British Standards Institution (BSI), London, United Kingdom.

B.S. 1881-116. (1989). Method For Determining the Compressive Strength of Concrete Cubes. British Standards Institution (BSI), London, United Kingdom.

ASTM C78-84. (2017). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM International, Pennsylvania, United States. doi:10.1520/C0078-94.

ASTM C469-02. (2017). Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression. ASTM International, Pennsylvania, United States. doi:10.1520/C0469-02.

ASTM D559/D559M-15. (2023). Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixtures. ASTM International, Pennsylvania, United States. doi:10.1520/D0559_D0559M-15.

Bui, H., Levacher, D., Boutouil, M., & Sebaibi, N. (2022). Effects of Wetting and Drying Cycles on Microstructure Change and Mechanical Properties of Coconut Fibre-Reinforced Mortar. Journal of Composites Science, 6(4), 102. doi:10.3390/jcs6040102.

Fwa, T. F. (1989). Effects of cyclic wetting-drying weathering on wear resistance of concrete pavement. Transportation Research Record, 1234, 87–93.

Li, S., Cui, H., Wang, H., Wang, W., Sui, Y., Dong, L., & Wang, J. (2023). Preparation and Performance Investigation of Epoxy Resin-Based Permeable Concrete Containing Ceramsite. Polymers, 15(24), 4704. doi:10.3390/polym15244704.

Awodiji, C. T. G & Sule, S (2024). Effect of Epoxy Resin on the Strength Property of Portland Cement Concrete. Saudi Journal of Civil Engineering, 8(08), 179–185. doi:10.36348/sjce.2024.v08i08.002.

Sedeeq, L., & Shaheen, K. (2020). Effect of Tar Epoxy coating on initial water absorption of concrete surface. Proceedings of the European Alliance for Innovation. doi:10.4108/eai.28-6-2020.2297946.

AlShareedah, O., & Nassiri, S. (2019). Methodology for Mechanistic Design of Pervious Concrete Pavements. Journal of Transportation Engineering, Part B: Pavements, 145(2), 04019012. doi:10.1061/jpeodx.0000117.

Huang, Y. H. (2004). Pavement analysis and design. Pearson/Prentice Hall, Upper Saddle River, United States.

Mohammed, H., Hacham, Z., Thom, N., & Dawson, A. (2024). Design of Two-Layer Roller Compacted Concrete with Joints by KENSLAB. Transportation Research Record. doi:10.1177/03611981241277821.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-05-021

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Hadel Obaidi, Nada Mahdi Fawzi, Haneen Adil Mohammed, Dumoaa Jawad kazem

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message