Crack Pattern Analysis and Reinforcement Strain Development in UHPSFRC-Strengthened RC Joints

Trung-Hieu Tran

Abstract


This study assesses the effectiveness of ultra-high performance steel fiber-reinforced concrete (UHPSFRC) in improving the seismic behavior of reinforced concrete (RC) exterior joints, emphasizing crack patterns and reinforcement strain development. Three full-scale specimens (a conventional RC control joint and two UHPSFRC-strengthened versions with 800 mm and 1025 mm strengthening lengths) were subjected to reversed cyclic loading to mimic seismic forces. Crack progression and strain distribution were examined through visual observations, strain gauges, and displacement data, offering a detailed evaluation of joint performance. Findings indicate that UHPSFRC enhances shear resistance, reduces crack widths significantly (<0.5 mm compared to >2 mm in the control), and modifies failure modes: the 800 mm length shifts damage to beam flexural failure, while the 1025 mm length increases peak capacity (231.4 kN vs. 185.8 kN) but reverts to joint shear failure. The novelty lies in UHPSFRC’s ability to replace transverse reinforcement in congested joint zones, enhancing ductility and easing construction difficulties. This research provides fresh insights into optimizing UHPSFRC application length, delivering practical guidance for seismic retrofitting, and contributing to design standards for robust RC frames in seismic regions.

 

Doi: 10.28991/CEJ-2025-011-04-014

Full Text: PDF


Keywords


Ultra-High Performance Concrete (UHPC); UHPSFRC; Exterior Joint; Reversed Cyclic Loading; Crack Pattern; Reinforcement Strain Development.

References


Tuken, A., Abbas, Y. M., & Siddiqui, N. A. (2023, October). Efficient prediction of the load-carrying capacity of ECC-strengthened RC beams–an extra-gradient boosting machine learning method. Structures, 56, 105053. doi:10.1016/j.istruc.2023.105053

Sun, B., Li, P., Wang, D., Ye, J., Liu, G., & Zhao, W. (2023). Evaluation of mechanical properties and anisotropy of 3D printed concrete at different temperatures. Structures 51, 391-401. doi:10.1016/j.istruc.2023.03.045.

Huang, Y., Wu, J. H., Yang, S. K., Wang, L. B., & Ma, F. (2024). Multiple blast resistance enhancement through negative-mass meta-honeycombs with multi-resonator. Composite Structures, 330, 117845. doi:10.1016/j.compstruct.2023.117845.

Feng, J., Rohaizat, R. E. B., & Qian, S. (2022). Polydopamine@ carbon nanotube reinforced and calcium sulphoaluminate coated hydrogels encapsulating bacterial spores for self-healing cementitious composites. Cement and Concrete Composites, 133, 104712. doi:10.1016/j.cemconcomp.2022.104712.

Zheng, W., You, S., Yao, Y., Ren, N., Ding, B., Li, F., & Liu, Y. (2023). Sustainable Generation of Sulfate Radicals and Decontamination of Micropollutants via Sequential Electrochemistry. Engineering, 30, 144–152. doi:10.1016/j.eng.2022.12.005.

Qin, D., You, X., Wang, H., Liu, Y., Shi, Y., Wang, N., Zhang, X., Feng, C., Liu, Y., Kong, M., Cheng, X., Bi, S., & Chen, X. (2023). Natural micropatterned fish scales combing direct osteogenesis and osteoimmunomodulatory functions for enhancing bone regeneration. Composites Part B: Engineering, 255, 110620. doi:10.1016/j.compositesb.2023.110620.

Yoo, D.-Y., Oh, T., & Banthia, N. (2022). Nanomaterials in ultra-high-performance concrete (UHPC) – A review. Cement and Concrete Composites, 134, 104730. doi:10.1016/j.cemconcomp.2022.104730.

Zainal, S. I. S., Hejazi, F., & Rashid, R. S. (2021). Enhancing the performance of knee beam–column joint using hybrid fibers reinforced concrete. International Journal of Concrete Structures and Materials, 15, 1-28. doi:10.1186/s40069-021-00457-w.

Sai Kubair, K., & Kalyana Rama, J. S. (2021). Seismic Performance of UHPFRC-Strengthened RC Beam–Column Joints Using Damage Plasticity Model—A Numerical Study. Recent Advances in Earthquake Engineering: Select Proceedings of VCDRR, 371-383. doi:10.1007/978-981-16-4617-1_30.

Zhou, G., Tang, F., Li, G., & Li, H. N. (2024). Gold-sputtered LPG fiber sensor pulse electroplated with iron-carbon for monitoring passivation and depassivation of carbon steel in concrete pore solutions. Cement and Concrete Composites, 147, 105432. doi:10.1016/j.cemconcomp.2024.105432.

Shoukry, M. E., Tarabia, A. M., & Abdelrahman, M. Z. (2022). Seismic retrofit of deficient exterior RC beam-column joints using steel plates and angles. Alexandria Engineering Journal, 61(4), 3147–3164. doi:10.1016/j.aej.2021.08.048.

Khodaei, M., Saghafi, M. H., & Golafshar, A. (2021). Seismic retrofit of exterior beam-column joints using steel angles connected by PT bars. Engineering Structures, 236, 112111. doi:10.1016/j.engstruct.2021.112111.

Bezerra, A. K. L., Melo, A. R. S., Freitas, I. L. B., Babadopulos, L. F. A. L., Carret, J. C., & Soares, J. B. (2023). Determination of modulus of elasticity and Poisson’s ratio of cementitious materials using S-wave measurements to get consistent results between static, ultrasonic and resonant testing. Construction and Building Materials, 398, 132456. doi:10.1016/j.conbuildmat.2023.132456.

de Souza, T. B., Medeiros, M. H. F., Araújo, F. W. C., & de Melo Neto, A. A. (2023). The influence of expanded polystyrene granules on the properties of foam concrete. Materials and Structures/Materiaux et Constructions, 56(1), 45. doi:10.1617/s11527-023-02109-9.

Huang, Y., Grünewald, S., Schlangen, E., & Luković, M. (2022). Strengthening of concrete structures with ultra-high performance fiber reinforced concrete (UHPFRC): A critical review. Construction and Building Materials, 336, 127398. doi:10.1016/j.conbuildmat.2022.127398.

Xu, D., Tang, J., Hu, X., Yu, C., Han, F., Sun, S., ... & Liu, J. (2023). The influence of curing regimes on hydration, microstructure and compressive strength of ultra-high performance concrete: A review. Journal of Building Engineering, 76, 107401. doi:10.1016/j.jobe.2023.107401.

Lei, D. Y., Guo, L. P., Chen, B., Curosu, I., & Mechtcherine, V. (2019). The connection between microscopic and macroscopic properties of ultra-high strength and ultra-high ductility cementitious composites (UHS-UHDCC). Composites Part B: Engineering, 164, 144-157. doi:10.1016/j.compositesb.2018.11.062.

Amran, M., Murali, G., Makul, N., Tang, W. C., & Alluqmani, A. E. (2023). Sustainable development of eco-friendly ultra-high performance concrete (UHPC): Cost, carbon emission, and structural ductility. Construction and Building Materials, 398, 132477. doi:10.1007/s40069-016-0157-4.

Li, W., Lu, Y., Wang, P., Jiang, Y., Wang, L., Shi, T., & Zheng, K. (2023). Comparative study of compressive behavior of confined NSC and UHPC/UHPFRC cylinders externally wrapped with CFRP jacket. Engineering Structures, 292, 116513. doi:10.1016/j.engstruct.2023.116513.

Chen, S. Z., Feng, D. C., Wang, W. J., & Taciroglu, E. (2022). Probabilistic machine-learning methods for performance prediction of structure and infrastructures through natural gradient boosting. Journal of Structural Engineering, 148(8), 04022096. doi:10.1061/(asce)st.1943-541x.0003401.

Diab, Z., Do, D. P., Rémond, S., & Hoxha, D. (2023). Probabilistic prediction of structural failure during 3D concrete printing processes. Materials and Structures, 56(4), 73.. doi:10.1617/s11527-023-02167-z.

Sarraz, A., Nakamura, H., Kanakubo, T., Miura, T., & Kobayashi, H. (2022). Bond behavior simulation of deformed rebar in fiber-reinforced cementitious composites using three-dimensional meso-scale model. Cement and Concrete Composites, 131, 104589. doi:10.1016/j.cemconcomp.2022.104589.

Wille, K., Naaman, A. E., El-Tawil, S., & Parra-Montesinos, G. J. (2012). Ultra-high performance concrete and fiber reinforced concrete: achieving strength and ductility without heat curing. Materials and structures, 45, 309-324. doi:10.1617/s11527-011-9767-0.

Fehling, E., Schmidt, M., Walraven, J., Leutbecher, T., & Fröhlich, S. (2014). Ultra-high performance concrete UHPC. Ernst & Sohn: Berlin, Germany, 25-32. doi:10.1002/9783433604076.

Chen, Z., Zhang, H., Yang, X., Leng, Z., & Tang, Y. (2024). Cooling efficiency of thermochromic asphalt pavement material and its contribution to field performance enhancement of asphalt mixture. Construction and Building Materials, 411, 134562. doi:10.1016/j.conbuildmat.2023.134562.

Sitong, W., Jinghua, Z., Chao, Z., Guanghui, T., Quangeng, L., & Qing, S. (2022). Ultimate strengths of triple-ring-stiffened tube-gusset X-joints considering the effect of chord load. Structures, 46, 233–245. doi:10.1016/j.istruc.2022.10.067.

Valcuende, M., Lliso-Ferrando, J. R., Ramón-Zamora, J. E., & Soto, J. (2021). Corrosion resistance of ultra-high performance fibre-reinforced concrete. Construction and Building Materials, 306, 124914. doi:10.1016/j.conbuildmat.2021.124914.

Shao, Y., Tich, K. L., Boaro, S. B., & Billington, S. L. (2022). Impact of fiber distribution and cyclic loading on the bond behavior of steel-reinforced UHPC. Cement and Concrete Composites, 126, 104338. doi:10.1016/j.cemconcomp.2021.104338

TCVN 197-1:2014. (2014). Metallic materials – Tensile testing – Part 1: Method of test at room temperature. Ministry of Science and Technology, Vietnam. (In Vietnamese).

TCVN 1651-2:2008. (2008). Steel for reinforcement of concrete – Part 2: Ribbed bars. Construction Publishing House, Hanoi, Vietnam. (In Vietnamese).

Ghasemi, M., Khorshidi, H., & Fanaie, N. (2021). Performance evaluation of RC-MRFs with UHPSFRC and SMA rebars subjected to mainshock-aftershock sequences. Structures, 32, 1871-1887. doi:10.1016/j.istruc.2021.02.058.

Xiong, X., Wei, Z., Zhang, D., Liu, J., Xie, Y., & He, L. (2025). An Experimental Study on the Seismic Performance of New Precast Prestressed Concrete Exterior Joints Based on UHPC Connection. Buildings, 15(5), 729. doi:10.3390/buildings15050729.

CSA S806:12. (2022). Canadian Standards Association (CSA). (2012). Design and Construction of Building structures with Fibre-Reinforced Polymer, CAN/CSA S806-12. Canadian Standards Association, Toronto, Canada.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-04-014

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Hieu Trung Tran

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message