Factors Affecting Properties of Cellular Lightweight Clay Improved with Fly Ash Geopolymer and Cement
Downloads
This research investigated the unit weight and unconfined compressive strength (UCS) of cellular lightweight high-calcium fly ash geopolymer and cement-stabilized soft Bangkok clay (CLFAG-OPC stabilized SC) as potential lightweight embankments and backfill materials. The investigated parameters included the soft clay:fly ash (SC:FA) ratio (50:50 to 90:10), ordinary Portland cement (OPC) content (0%-3%), water content (1.5LL-3.0LL), liquid alkaline content (L) (0.6FA to 1.5FA), NS:NH ratio (0.5-3), NH concentration (8 M), air foam content (Ac) (0%-150% by SC volume), and curing time (7-90 days). The results indicated that the SC:FA ratio, OPC content, water content, NS:NH ratio, L content, and Ac significantly influenced both the unit weight and UCS of samples. Increasing water content, L content, and Ac generally reduced unit weight, except when influenced by FA content, OPC content, and the NS:NH ratio. The optimal composition for maximum UCS was achieved with an SC:FA ratio of 50:50, OPC content of 3%, water content of 2.0LL, NS:NH ratio of 1, L content of 0.6FA, and 0% Ac. A predictive equation for unit weight was proposed using phase diagrams. Additionally, mix design charts were shown to be valuable tools for calculating the unit weight and UCS, demonstrating their effectiveness for lightweight embankment and backfill applications.
Downloads
[1] Wang, L., Xue, X., Zhao, Z., & Wang, Z. (2018). The impacts of transportation infrastructure on sustainable development: Emerging trends and challenges. International Journal of Environmental Research and Public Health, 15(6), 1172. doi:10.3390/ijerph15061172.
[2] Horpibulsk, S., Rachan, R., Suddeepong, A., & Chinkulkijniwat, A. (2011). Strength development in cement admixed Bangkok clay: Laboratory and field investigations. Soils and Foundations, 51(2), 239–251. doi:10.3208/sandf.51.239.
[3] Chaiyaput, S., Ayawanna, J., Jongpradist, P., Poorahong, H., Sukkarak, R., & Jamsawang, P. (2023). Application of a cement–clay–air foam mixture as a lightweight embankment material for construction on soft clay. Case Studies in Construction Materials, 18, 2188. doi:10.1016/j.cscm.2023.e02188.
[4] Horpibulsuk, S., Suddeepong, A., Chinkulkijniwat, A., & Liu, M. D. (2012). Strength and compressibility of lightweight cemented clays. Applied Clay Science, 69, 11–21. doi:10.1016/j.clay.2012.08.006.
[5] Rihan, M. A. M., Onchiri, R. O., Gathimba, N., & Sabuni, B. (2024). Mechanical and Microstructural Properties of Geopolymer Concrete Containing Fly Ash and Sugarcane Bagasse Ash. Civil Engineering Journal (Iran), 10(4), 1292–1309. doi:10.28991/CEJ-2024-010-04-018.
[6] Chen, J., Shen, S. L., Yin, Z. Y., Xu, Y. S., & Horpibulsuk, S. (2016). Evaluation of Effective Depth of PVD Improvement in Soft Clay Deposit: A Field Case Study. Marine Georesources & Geotechnology, 34(5), 420–430. doi:10.1080/1064119X.2015.1016638.
[7] Teerawattanasuk, C., Voottipruex, P., & Horpibulsuk, S. (2015). Mix design charts for lightweight cellular cemented Bangkok clay. Applied Clay Science, 104, 318–323. doi:10.1016/j.clay.2014.12.012.
[8] Wu, J., Deng, Y., Zheng, X., Cui, Y., Zhao, Z., Chen, Y., & Zha, F. (2019). Hydraulic conductivity and strength of foamed cement-stabilized marine clay. Construction and Building Materials, 222, 688–698. doi:10.1016/j.conbuildmat.2019.06.164.
[9] Wang, J., Hu, B., & Soon, J. H. (2019). Physical and mechanical properties of a bulk lightweight concrete with expanded polystyrene (EPS) beads and soft marine clay. Materials, 12(10), 1662. doi:10.3390/ma12101662.
[10] Phutthananon, C., Songprom, A., Sukkarak, R., Jongpradist, P., Kongkitkul, W., Youwai, S., & Jamsawang, P. (2024). Strength and Elastic Properties of Air–Cement-Treated Clays Under Cyclic and Monotonic Compression Tests. Arabian Journal for Science and Engineering, 50(11), 7895–7910. doi:10.1007/s13369-024-09096-1.
[11] Voottipruex, P., Teerawattanasuk, C., Sramoon, W., & Meepon, I. (2022). Stabilization of Soft Clay Using Perlite Geopolymer Activated by Sodium Hydroxide. International Journal of Geosynthetics and Ground Engineering, 8(1), 5. doi:10.1007/s40891-022-00350-w.
[12] Chindaprasirt, P., Rattanasak, U., & Taebuanhuad, S. (2012). Resistance to acid and sulfate solutions of microwave-assisted high calcium fly ash geopolymer. Materials and Structures, 46(3), 375–381. doi:10.1617/s11527-012-9907-1.
[13] Mohammed, B. S., Haruna, S., Wahab, M. M. A., Liew, M. S., & Haruna, A. (2019). Mechanical and microstructural properties of high calcium fly ash one-part geopolymer cement made with granular activator. Heliyon, 5(9), e02255. doi:10.1016/j.heliyon.2019.e02255.
[14] Suksiripattanapong, C., Krosoongnern, K., Thumrongvut, J., Sukontasukkul, P., Horpibulsuk, S., & Chindaprasirt, P. (2020). Properties of cellular lightweight high calcium bottom ash-portland cement geopolymer mortar. Case Studies in Construction Materials, 12, 337. doi:10.1016/j.cscm.2020.e00337.
[15] Nuaklong, P., Jongvivatsakul, P., Pothisiri, T., Sata, V., & Chindaprasirt, P. (2020). Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete. Journal of Cleaner Production, 252, 119797. doi:10.1016/j.jclepro.2019.119797.
[16] Arulrajah, A., Yaghoubi, M., Disfani, M. M., Horpibulsuk, S., Bo, M. W., & Leong, M. (2018). Evaluation of fly ash- and slag-based geopolymers for the improvement of a soft marine clay by deep soil mixing. Soils and Foundations, 58(6), 1358–1370. doi:10.1016/j.sandf.2018.07.005.
[17] Yaghoubi, M., Arulrajah, A., Disfani, M. M., Horpibulsuk, S., Bo, M. W., & Darmawan, S. (2018). Effects of industrial by-product based geopolymers on the strength development of a soft soil. Soils and Foundations, 58(3), 716–728. doi:10.1016/j.sandf.2018.03.005.
[18] Wu, J., Min, Y., Li, B., & Zheng, X. (2021). Stiffness and strength development of the soft clay stabilized by the one-part geopolymer under one-dimensional compressive loading. Soils and Foundations, 61(4), 974–988. doi:10.1016/j.sandf.2021.06.001.
[19] Suksiripattanapong, C., Sakdinakorn, R., Tiyasangthong, S., Wonglakorn, N., Phetchuay, C., & Tabyang, W. (2022). Properties of soft Bangkok clay stabilized with cement and fly ash geopolymer for deep mixing application. Case Studies in Construction Materials, 16, 1081. doi:10.1016/j.cscm.2022.e01081.
[20] Phojan, W., Luepongpattana, S., Wonglakorn, N., Thumrongvut, J., Tabyang, W., Keawsawasvong, S., & Suksiripattanapong, C. (2023). Mechanical and environmental characteristics of high calcium fly ash geopolymer stabilized soft Bangkok clay contaminated with zinc sludge. Case Studies in Chemical and Environmental Engineering, 8, 100480. doi:10.1016/j.cscee.2023.100480.
[21] Horpibulsuk, S., Wijitchot, A., Nerimitknornburee, A., Shen, S. L., & Suksiripattanapong, C. (2014). Factors influencing unit weight and strength of lightweight cemented clay. Quarterly Journal of Engineering Geology and Hydrogeology, 47(1), 101–109. doi:10.1144/qjegh2012-069.
[22] ASTM D854-23. (2023). Standard Test Methods for Specific Gravity of Soil Solids by the Water Displacement Method. ASTM International, Pennsylvania, United States. doi:10.1520/D0854-23.
[23] ASTM D4318-17e1. (2018). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D4318-17E01.
[24] ASTM D2487-17. (2020). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-17.
[25] ASTM C188-17. (2023). Standard Test Method for Density of Hydraulic Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0188-17.
[26] ASTM C618-22. (2023). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-22.
[27] ASTM D7263-21. (2021). Standard Test Methods for Laboratory Determination of Density and Unit Weight of Soil Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/D7263-21.
[28] ASTM D2166-06. (2010). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International, Pennsylvania, United States. doi:10.1520/D2166-06.
[29] Posi, P., Thongjapo, P., Thamultree, N., Boontee, P., Kasemsiri, P., & Chindaprasirt, P. (2016). Pressed lightweight fly ash-OPC geopolymer concrete containing recycled lightweight concrete aggregate. Construction and Building Materials, 127, 450–456. doi:10.1016/j.conbuildmat.2016.09.105.
[30] Neramitkornburi, A., Horpibulsuk, S., Shen, S. L., Arulrajah, A., & Miri Disfani, M. (2015). Engineering properties of lightweight cellular cemented clay-fly ash material. Soils and Foundations, 55(2), 471–483. doi:10.1016/j.sandf.2015.02.020.
[31] Wongpattanawut, W., & Ayudhya, B. I. N. (2024). Optimizing Alkali-Concentration on Fresh and Durability Properties of Defected Sanitary Ware Porcelain based Geopolymer Concrete. Civil Engineering Journal (Iran), 10(4), 1069–1092. doi:10.28991/CEJ-2024-010-04-05.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.