Innovative Advancements in Construction: The Sustainable Promise of Aerated Concrete Incorporating Fly Ash and River Sand
Downloads
Aerated Concrete, or lightweight concrete, is primarily used in construction work for non-load-bearing structures and is typically produced with cement as a primary binding material. Cement production accounts for 7 to 8% of the environmental CO2 emissions. Furthermore, the dumping of industrial waste and the consumption of aggregates disrupt the environment and ecosystem. This research aims at developing sustainable AC by partially substituting cement with FA and hill sand with IRS while maintaining the fundamental properties of aerated concrete. The study was conducted to investigate the physical and chemical properties of the materials and the physical and mechanical properties of aerated concrete. Variations of fly ash, i.e., 10%-70%, were incorporated as a CRM to get optimum FA usage in terms of density and compressive strength. Optimum FA was incorporated as CRM and IRS as sand replacement, used in four variations, i.e., 10% - 25%. Specimens were cured using the conventional curing method and autoclaving for NAAC and AAC, considering both manufacturing processes, CO2 emissions and time limitations in respective curing methods. Conventional curing was performed at 7, 14, and 28 days, while autoclaving was performed at various pressures, i.e., 0.5 bar, 1 bar, and 1.5 bar. The optimum compressive strength of AAC and NAAC was achieved when 20% of the IRS and 50% of FA were replaced with hill sand and cement, respectively, for both AAC and NAAC. Additionally, approximately 32% and 39.3% of CO2 emissions were reduced with 50% FA and 20% river sand replacement with cement for AAC and NAAC specimens. Although AAC demonstrated slightly lower water absorption due to densification through autoclaving, NAAC performed satisfactorily in offering a more cost-effective and energy-efficient alternative.
Downloads
[1] Fudge, C. (2011). Designing with AAC to achieve sustainable houses. Management, 9(10), 1-11.
[2] Qu, X., & Zhao, X. (2017). Previous and present investigations on the components, microstructure and main properties of autoclaved aerated concrete – A review. Construction and Building Materials, 135, 505-516. doi:10.1016/j.conbuildmat.2016.12.208.
[3] Kreft, O. (2017). Autoclaved aerated concrete with sulphate content: an environmentally friendly, durable and recyclable building material. Mauerwerk, 21(5), 287–296. doi:10.1002/dama.201700012.
[4] Fudge, C., Fouad, F., & Klingner, R. (2019). Autoclaved aerated concrete. Developments in the Formulation and Reinforcement of Concrete, Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/b978-0-08-102616-8.00015-0.
[5] Mindess, S. (2019). Developments in the formulation and reinforcement of concrete. Developments in the Formulation and Reinforcement of Concrete. Woodhead Publishing. doi:10.1016/C2017-0-03347-5.
[6] Hendry, E. A. W. (2001). Masonry walls: materials and construction. Construction and Building Materials, 15(8), 323–330. doi:10.1016/s0950-0618(01)00019-8.
[7] Hess, J. A., Kincl, L., Amasay, T., & Wolfe, P. (2010). Ergonomic evaluation of masons laying concrete masonry units and autoclaved aerated concrete. Applied Ergonomics, 41(3), 477–483. doi:10.1016/j.apergo.2009.10.003.
[8] Phonphuak, N., & Chindaprasirt, P. (2015). Types of waste, properties, and durability of pore-forming waste-based fired masonry bricks. Eco-Efficient Masonry Bricks and Blocks, 103–127, Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/b978-1-78242-305-8.00006-1.
[9] Radhi, H. (2011). Viability of autoclaved aerated concrete walls for the residential sector in the United Arab Emirates. Energy and Buildings, 43(9), 2086–2092. doi:10.1016/j.enbuild.2011.04.018.
[10] Holt, E., & Raivio, P. (2005). Use of gasification residues in aerated autoclaved concrete. Cement and Concrete Research, 35(4), 796–802. doi:10.1016/j.cemconres.2004.05.005.
[11] DIN EN 771-4:2015-11. (2015). Specification for masonry units - Part 4: Autoclaved aerated concrete masonry units. Deutsches Institut für Normung (DIN), Berlin, Germany. (In German).
[12] BS EN 771-4:2011+A1:2015. (2011). Specification for masonry units - Autoclaved aerated concrete masonry units. British Standards Institution (BSI), London, United Kingdom.
[13] Wongkeo, W., & Chaipanich, A. (2010). Compressive strength, microstructure and thermal analysis of autoclaved and air cured structural lightweight concrete made with coal bottom ash and silica fume. Materials Science and Engineering: A, 527(16–17), 3676–3684. doi:10.1016/j.msea.2010.01.089.
[14] Thongtha, A., Maneewan, S., Punlek, C., & Ungkoon, Y. (2014). Investigation of the compressive strength, time lags and decrement factors of AAC-lightweight concrete containing sugar sediment waste. Energy and Buildings, 84, 516–525. doi:10.1016/j.enbuild.2014.08.026.
[15] Bonakdar, A., Babbitt, F., & Mobasher, B. (2013). Physical and mechanical characterization of Fiber-Reinforced Aerated Concrete (FRAC). Cement and Concrete Composites, 38, 82–91. doi:10.1016/j.cemconcomp.2013.03.006.
[16] Lam, N. N. (2021). Recycling of AAC Waste in the Manufacture of Autoclaved Aerated Concrete in Vietnam. International Journal of GEOMATE, 20(78), 128–134. doi:10.21660/2021.78.j2048.
[17] Demirboǧa, R. (2007). Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures. Building and Environment, 42(7), 2467–2471. doi:10.1016/j.buildenv.2006.06.010.
[18] Demirboǧa, R., & Gül, R. (2003). The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cement and Concrete Research, 33(5), 723–727. doi:10.1016/S0008-8846(02)01032-3.
[19] Demirboǧa, R. (2003). Influence of mineral admixtures on thermal conductivity and compressive strength of mortar. Energy and Buildings, 35(2), 189–192. doi:10.1016/S0378-7788(02)00052-X.
[20] Shrivastava O. P. (1977). Lightweight aerated concrete – a review. Indian Concrete Journal, 51, 10–23.
[21] Xia, Y., Yan, Y., & Hu, Z. (2013). Utilization of circulating fluidized bed fly ash in preparing non-autoclaved aerated concrete production. Construction and Building Materials, 47, 1461–1467. doi:10.1016/j.conbuildmat.2013.06.033.
[22] Narayanan, N., & Ramamurthy, K. (2000). Structure and properties of aerated concrete: A review. Cement and Concrete Composites, 22(5), 321–329. doi:10.1016/S0958-9465(00)00016-0.
[23] Narayanan, N., & Ramamurthy, K. (2000). Microstructural investigations on aerated concrete. Cement and Concrete Research, 30(3), 457–464. doi:10.1016/S0008-8846(00)00199-X.
[24] Valore, R. C. (1954). Cellular Concretes Part 1 Composition and Methods of Preparation. ACI Journal Proceedings, 50(5), 773–796. doi:10.14359/11794.
[25] Aroni, S., Groot, G. J., Robinson, M. J., Svanholm, G., & Wittman, F. H. (1993). RILEM Recommended Practice: Autoclaved Aerated Concrete, Properties, Testing and Design. Chapman & Hall, London, United kingdom.
[26] Lashari, A. R., Kumar, A., Kumar, R., & Rizvi, S. H. (2023). Combined effect of silica fume and fly ash as cementitious material on strength characteristics, embodied carbon, and cost of autoclave aerated concrete. Environmental Science and Pollution Research, 30(10), 27875–27883. doi:10.1007/s11356-022-24217-9.
[27] Ramamurthy, K., & Narayanan, N. (2000). Factors influencing the density and compressive strength of aerated concrete. Magazine of Concrete Research, 52(3), 163–168. doi:10.1680/macr.2000.52.3.163.
[28] Blanco, F., Garciéa, P., Mateos, P., & Ayala, J. (2000). Characteristics and properties of lightweight concrete manufactured with cenospheres. Cement and Concrete Research, 30(11), 1715–1722. doi:10.1016/S0008-8846(00)00357-4.
[29] Xie, Y., Zhou, H., Wang, J., Meng, H., Wei, S., Sun, J., & Hu, Y. (2025). Enhancing autoclaved aerated concrete performance via replacement of fly ash with granite stone powder and steel slag: Critical role of Ca/Si ratio. Construction and Building Materials, 477, 141360. doi:10.1016/j.conbuildmat.2025.141360.
[30] Jerman, M., Keppert, M., Výborný, J., & Černý, R. (2013). Hygric, thermal and durability properties of autoclaved aerated concrete. Construction and Building Materials, 41, 352–359. doi:10.1016/j.conbuildmat.2012.12.036.
[31] Tikalsky, P. J., Pospisil, J., & MacDonald, W. (2004). A method for assessment of the freeze-thaw resistance of preformed foam cellular concrete. Cement and Concrete Research, 34(5), 889–893. doi:10.1016/j.cemconres.2003.11.005.
[32] Abdullah, K., Hussin, M. W., Zakaria, F., Muhamad, R., & Abdul Hamid, Z. (2006). POFA: A potential partial cement replacement material in aerated concrete. Proceedings of the 6th Asia-Pacific Structural Engineering and Construction Conference, 5-6 September, 2006, Kuala Lumpur, Malaysia.
[33] Rahman, R. A., Fazlizan, A., Asim, N., & Thongtha, A. (2021). A review on the utilization of waste material for autoclaved aerated concrete production†. Journal of Renewable Materials, 9(1), 61–72. doi:10.32604/jrm.2021.013296.
[34] Kurama, H., Topçu, I. B., & Karakurt, C. (2009). Properties of the autoclaved aerated concrete produced from coal bottom ash. Journal of Materials Processing Technology, 209(2), 767–773. doi:10.1016/j.jmatprotec.2008.02.044.
[35] Dey, P., Paul, A., Dhar, M., Das, D., & Saha, R. (2025). State-of-art review and future prospects of autoclave aerated concrete for building a sustainable tomorrow. Environment, Development and Sustainability, 1–42,. doi:10.1007/s10668-025-06194-4.
[36] Wei, C., Wu, P., Gu, J., Liu, X., Zhang, Z., Li, S., & Shao, Y. (2025). Potential of titanium gypsum in autoclaved aerated concrete for large incorporation: Hydration characteristics and performance optimization. Construction and Building Materials, 473, 140995. doi:10.1016/j.conbuildmat.2025.140995.
[37] Sun, R., Shen, P., Zhang, X., Qin, Q., Tao, Y., Wang, D., Liu, Z., & Poon, C. sun. (2025). Effects of curing regimes and binder designs on steel slag-based carbonated aerated concrete (CAC): Reaching a balance between pre-hydration and carbonation. Cement and Concrete Research, 195, 107905. doi:10.1016/j.cemconres.2025.107905.
[38] Chen, C., Liu, X., Wang, X., Jiu, S., Chen, Y., & Liu, Y. (2025). Development of sustainable non-autoclaved aerated concrete: Influence of aluminium powder on mechanical properties and pore structure of geopolymers based on rockwool furnace bottom slag waste. Construction and Building Materials, 472, 140957. doi:10.1016/j.conbuildmat.2025.140957.
[39] Peng, F., Chen, C., Jiu, S., Song, Q., & Chen, Y. (2024). Preparation and Characterization of Novel Sulfoaluminate-Cement-Based Nonautoclaved Aerated Concrete. Materials, 17(4), 836. doi:10.3390/ma17040836.
[40] Shon, C. S., Mukangali, I., Zhang, D., Ulykbanov, A., & Kim, J. (2021). Evaluation of non-autoclaved aerated concrete for energy behaviors of a residential house in Nur-Sultan, Kazakhstan. Buildings, 11(12), 610. doi:10.3390/buildings11120610.
[41] Bhatawdekar, R. M., Singh, T. N., Tonnizam Mohamad, E., Armaghani, D. J., & Binti Abang Hasbollah, D. Z. (2021). River Sand Mining Vis a Vis Manufactured Sand for Sustainability. Proceedings of the International Conference on Innovations for Sustainable and Responsible Mining, Lecture Notes in Civil Engineering, 109, Springer, Cham, Switzerland. doi:10.1007/978-3-030-60839-2_8.
[42] Sangoju, B., Ramesh, G., Bharatkumar, B. H., & Ramanjaneyulu, K. (2017). Evaluation of Durability Parameters of Concrete with Manufacture Sand and River Sand. Journal of The Institution of Engineers (India): Series A, 98(3), 267–275. doi:10.1007/s40030-017-0204-4.
[43] Lakhiar, M. T., Mohamad, N., Shaikh, M. A. B., Vighio, A. A., Jhatial, A. A., & Abdul Samad, A. A. (2018). Effect of River Indus Sand on Concrete Tensile Strength. Engineering, Technology & Applied Science Research, 8(2), 2796–2798. doi:10.48084/etasr.1869.
[44] Kunchariyakun, K., Asavapisit, S., & Sinyoung, S. (2018). Influence of partial sand replacement by black rice husk ash and bagasse ash on properties of autoclaved aerated concrete under different temperatures and times. Construction and Building Materials, 173, 220–227. doi:10.1016/j.conbuildmat.2018.04.043.
[45] Serhat Baspinar, M., Demir, I., Kahraman, E., & Gorhan, G. (2014). Utilization potential of fly ash together with silica fume in autoclaved aerated concrete production. KSCE Journal of Civil Engineering, 18(1), 47–52. doi:10.1007/s12205-014-0392-7.
[46] Baturin, G. N., & Gordeev, V. V. (2019). Geochemistry of Suspended Matter in the Amazon River Waters. Geochemistry International, 57(2), 197–205. doi:10.1134/S0016702919020022.
[47] Ali, M. H., Aal, A. A. El, Radwan, A. E., & Saber, E. S. A. (2024). Geochemistry and mineralogy of modern floodplain Nile sediments of Sohag area, Egypt: an environmental perspective. Environmental Earth Sciences, 83(11), 350. doi:10.1007/s12665-024-11638-7.
[48] Channa, M. Y., Anwar, J., Kalsoom, R., & Abidi, S. H. I. (2024). Qualitative analysis of rivers sand sources (Silica sand, Ravi river sand, Indus river sand, and Jhelum river sand) for metal casting: a comparative study. Engineering Research Express, 6(3), 35435. doi:10.1088/2631-8695/ad7cc2.
[49] Verma, A. (2015). Evaluation of sea sand and river sand properties and their comparison. National Dong Hwa University, 1-36. doi:10.13140/RG.2.1.4906.6327.
[50] ASTM C150/C150M-12. (2015). Standard Specification for Portland Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0150_C0150M-12.
[51] Raj, I. S., & John, E. (2019). Evaluation of properties of aerated concrete partially replaced by cement with fly ash. International Journal of Advanced Research in Engineering and Technology, 10(1), 223–229. doi:10.34218/IJARET.10.1.2019.022.
[52] Li, G., Zhou, C., Ahmad, W., Usanova, K. I., Karelina, M., Mohamed, A. M., & Khallaf, R. (2022). Fly Ash Application as Supplementary Cementitious Material: A Review. Materials, 15(7), 2664. doi:10.3390/ma15072664.
[53] ASTM C618-17a. (2019). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-17A.
[54] Yazal, A., Kavas, T., & Soyal, A. D. (2018). Effects of different autoclaving pressure on mechanical properties of AAC. Ce/Papers, 2(4), 591–594. doi:10.1002/cepa.829.
[55] Zdeb, T. (2017). An analysis of the steam curing and autoclaving process parameters for reactive powder concretes. Construction and Building Materials, 131, 758–766. doi:10.1016/j.conbuildmat.2016.11.026.
[56] Moslehi, A., Dashti Rahmatabadi, M. A., & Arman, H. (2023). Determination of Optimized Mix Design of Reactive Powder Concrete. Advances in Civil Engineering, 2023, 754–767,. doi:10.1155/2023/4421095.
[57] Zhu, Q. (2011). CO2 abatement in the cement industry. IEA Clean Coal Centre, London, United Kingdom.
[58] Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125–130. doi:10.1016/j.conbuildmat.2013.01.023.
[59] Fredriksson, C. (2019). Sustainability of metal powder additive manufacturing. Procedia Manufacturing, 33, 139–144. doi:10.1016/j.promfg.2019.04.018.
[60] National Stone Sand & Gravel Association. (2021). The Aggregates Industry Greenhouse Gases: Low Emissions, High Resiliency. National Stone Sand & Gravel Association, Alexandria, United States.
[61] Sukontasukkul, P. (2009). Methodology for calculating carbon dioxide emission in the production of ready-mixed concrete. The Proceedings of the First International Conference on Computational Technologies in Concrete Structures (CTCS 09), 24-27 May 2009, Jeju, Korea.
[62] Bing, L., Ma, M., Liu, L., Wang, J., Niu, L., & Xi, F. (2023). An investigation of the global uptake of CO2 by lime from 1930 to 2020. Earth System Science Data, 15(6), 2431–2444,. doi:10.5194/essd-15-2431-2023.
[63] Turski, R. (2022). EAACA net-zero roadmap for autoclaved aerated concrete. Ce/Papers, 5(5), 48-52. doi:10.1002/cepa.1876.
[64] Stel’makh, S. A., Shcherban’, E. M., Beskopylny, A. N., Mailyan, L. R., Meskhi, B., Beskopylny, N., Dotsenko, N., & Kotenko, M. (2022). Influence of Recipe Factors on the Structure and Properties of Non-Autoclaved Aerated Concrete of Increased Strength. Applied Sciences (Switzerland), 12(14), 6984. doi:10.3390/app12146984.
[65] Pachideh, G., & Gholhaki, M. (2019). Effect of pozzolanic materials on mechanical properties and water absorption of autoclaved aerated concrete. Journal of Building Engineering, 26(February), 100856. doi:10.1016/j.jobe.2019.100856.
[66] Bukhari, S. A., Patil, D., Gogate, N. G., & Minde, P. R. (2023). Utilization of waste materials in non-autoclaved aerated concrete blocks: State of art review. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.02.334.
[67] Narattha, C., Thongsanitgarn, P., & Chaipanich, A. (2015). Thermogravimetry analysis, compressive strength and thermal conductivity tests of non-autoclaved aerated Portland cement-fly ash-silica fume concrete. Journal of Thermal Analysis and Calorimetry, 122(1), 11–20. doi:10.1007/s10973-015-4724-8.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.