Soil Erosion Risk and Mitigation Strategies in Steep and Complex Forest Ecosystems
Downloads
The soil erosion risk on the slopes in Luong Son District, Hoa Binh Province, Vietnam, was determined to inform sustainable land management and conservation planning. Remote sensing and geographic information system (GIS) technologies were integrated with the universal soil loss equation (USLE) model to generate thematic maps of rainfall erosivity (R), soil erodibility (K), topographic factors (LS), and vegetation cover. These maps were combined to produce a comprehensive soil erosion risk map. The results showed that 65.09% of the district (23,747.61 hectares), mainly flat and midland areas, had no erosion risk. Light, moderate, and severe erosion affected 19.95%, 7.61%, and 7.35% of the region, respectively. Higher erosion risk is concentrated in mid-level mountainous and limestone regions, characterized by steep slopes and sparse vegetation. These findings highlight the influence of slope gradient and length on erosion severity and spatial patterns. Remote sensing, GIS, and USLE were integrated to spatially assess soil erosion, providing a scientific basis for targeted interventions, such as reforestation and terrace farming. This study contributes to gaps in the literature by comprehensively analyzing spatial soil erosion risk and providing practical recommendations for mitigating soil erosion in vulnerable landscapes and supporting sustainable land use planning under climate change pressures.
Downloads
[1] Van De, N., Douglas, I., Mcmorrow, J., Lindley, S., Thuy Binh, D. K. N., Van, T. T., Thanh, L. H., & Tho, N. (2008). Erosion and nutrient loss on sloping land under intense cultivation in Southern Vietnam. Geographical Research, 46(1), 4–16. doi:10.1111/j.1745-5871.2007.00487.x.
[2] Nguyen, A. T., & Hens, L. (2021). Diversified responses to contemporary pressures on sloping agricultural land: Thai farmer’s perception of mountainous landscapes in northern Vietnam. Environment, Development and Sustainability, 23(4), 5411–5429. doi:10.1007/s10668-020-00822-x.
[3] François, M., de Aguiar, T. R., Mielke, M. S., Rousseau, A. N., Faria, D., & Mariano-Neto, E. (2024). Interactions between Forest Cover and Watershed Hydrology: A Conceptual Meta-Analysis. Water (Switzerland), 16(23), 3350. doi:10.3390/w16233350.
[4] Dinh, H. H., & Wesseler, J. (2024). Decentralization of Vietnam’s forestlands: The policy process and impact. Land Use Policy, 143, 107194. doi:10.1016/j.landusepol.2024.107194.
[5] Alewell, C., Borrelli, P., Meusburger, K., & Panagos, P. (2019). Using the USLE: Chances, challenges and limitations of soil erosion modelling. International Soil and Water Conservation Research, 7(3), 203–225. doi:10.1016/j.iswcr.2019.05.004.
[6] Benavidez, R., Jackson, B., Maxwell, D., & Norton, K. (2018). A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view to increasing its global applicability and improving soil loss estimates. Hydrology and Earth System Sciences, 22(11), 6059–6086. doi:10.5194/hess-22-6059-2018.
[7] Serbaji, M. M., Bouaziz, M., & Weslati, O. (2023). Soil Water Erosion Modeling in Tunisia Using RUSLE and GIS Integrated Approaches and Geospatial Data. Land, 12(3), 548. doi:10.3390/land12030548.
[8] Luvai, A., Obiero, J., & Omuto, C. (2022). Soil loss assessment using the revised universal soil loss equation (RUSLE) model. Applied and Environmental Soil Science, 2022(1), 2122554. doi:10.1155/2022/2122554.
[9] Perović, V., Životić, L., Kadović, R., Dordević, A., Jaramaz, D., Mrvić, V., & Todorović, M. (2013). Spatial modelling of soil erosion potential in a mountainous watershed of Southeastern Serbia. Environmental Earth Sciences, 68(1), 115–128. doi:10.1007/s12665-012-1720-1.
[10] Kourgialas, N. N., Koubouris, G. C., Karatzas, G. P., & Metzidakis, I. (2016). Assessing water erosion in Mediterranean tree crops using GIS techniques and field measurements: the effect of climate change. Natural Hazards, 83, 65–81. doi:10.1007/s11069-016-2354-5.
[11] Chatterjee, S., Krishna, A. P., & Sharma, A. P. (2014). Geospatial assessment of soil erosion vulnerability at watershed level in some sections of the Upper Subarnarekha river basin, Jharkhand, India. Environmental Earth Sciences, 71(1), 357–374. doi:10.1007/s12665-013-2439-3.
[12] Abdi, B., Kolo, K., & Shahabi, H. (2023). Soil erosion and degradation assessment integrating multi-parametric methods of RUSLE model, RS, and GIS in the Shaqlawa agricultural area, Kurdistan Region, Iraq. Environmental Monitoring and Assessment, 195(10), 1149. doi:10.1007/s10661-023-11796-4.
[13] Mousavimehr, S. M., & Kavianpour, M. R. (2025). A non-stationary downscaling and gap-filling approach for GRACE/GRACE-FO data under climatic and anthropogenic influences. Applied Water Science, 15(5), 1-15. doi:10.1007/s13201-025-02427-z.
[14] El Moutkine, K., Tabyaoui, H., El Hammichi, F., El Hassani, F., & Benabdelhadi, M. (2024). Assessing Water Erosion Vulnerability in the Lower Ziz Watershed: Integrating PAP/RAC methodology with Remote Sensing and GIS. BIO Web of Conferences, 115. doi:10.1051/bioconf/202411501002.
[15] Li, P., Tariq, A., Li, Q., Ghaffar, B., Farhan, M., Jamil, A., Soufan, W., El Sabagh, A., & Freeshah, M. (2023). Soil erosion assessment by RUSLE model using remote sensing and GIS in an arid zone. International Journal of Digital Earth, 16(1), 3105–3124. doi:10.1080/17538947.2023.2243916.
[16] Uyanık, H., Şentürk, E., Akpınar, M. H., Ozcelik, S. T. A., Kokum, M., Freeshah, M., & Sengur, A. (2023). A Multi-Input Convolutional Neural Networks Model for Earthquake Precursor Detection Based on Ionospheric Total Electron Content. Remote Sensing, 15(24), 5690. doi:10.3390/rs15245690.
[17] Chen, F., Zhang, X., Guo, F., Zheng, J., Nan, Y., & Freeshah, M. (2022). TDS-1 GNSS reflectometry wind geophysical model function response to GPS block types. Geo-Spatial Information Science, 25(2), 312–324. doi:10.1080/10095020.2021.1997076.
[18] Liu, H., Yang, P., Ren, X., Mei, D., Le, X., Zhang, X., & Freeshah, M. (2024). The Short-Term Prediction of Low-Latitude Ionospheric Irregularities Leveraging a Hybrid Ensemble Model. IEEE Transactions on Geoscience and Remote Sensing, 62, 1–15. doi:10.1109/TGRS.2023.3346449.
[19] Freeshah, M., Osama, N., & Zhang, X. (2023). Using real GNSS data for ionospheric disturbance remote sensing associated with strong thunderstorm over Wuhan city. Acta Geodaetica et Geophysica, 58(4), 553–574. doi:10.1007/s40328-023-00423-w.
[20] Uyanik, H., Kokum, M., Senturk, E., Freeshah, M., Ozcelik, S. T. A., Halil Akpinar, M., Celik, S., & Sengur, A. (2025). Seismic Foresight: A Novel Multi-Input 1D Convolutional Mixer Model for Earthquake Prediction Using Ionospheric Signals. IEEE Access, 13, 116200–116210. doi:10.1109/ACCESS.2025.3583749.
[21] Fathy, A., Freeshah, M., Şentürk, E., Hamza, A. F., Mohamed, M. H., & Saad Farid, A. I. (2025). Assessing the performance of IRI-PLAS-MAP in the frame of hmF2 COSMIC observations over the African sector during the ascending phase of solar cycle 25. Advances in Space Research, 76(3), 1890–1905. doi:10.1016/j.asr.2025.05.068.
[22] Fathy, A., Otsuka, Y., Ghamry, E., Marchetti, D., Pradipta, R., Farid, A. I. S., & Freeshah, M. (2025). Insights into Conjugate Hemispheric Ionospheric Disturbances Associated with the Beirut Port Explosion on 4 August 2020 Using Multi Low-Earth-Orbit Satellites. Remote Sensing, 17(11), 1908. doi:10.3390/rs17111908.
[23] Osama, N., Shao, Z., & Freeshah, M. (2023). The FABDEM Outperforms the Global DEMs in Representing Bare Terrain Heights. Photogrammetric Engineering and Remote Sensing, 89(10), 613–624. doi:10.14358/PERS.23-00026R2.
[24] Osama, N., Yang, B., Ma, Y., & Freeshah, M. (2021). Digital terrain modeling method in urban areas by the Icesat-2 (Generating precise terrain surface profiles from photon-counting technology). Photogrammetric Engineering and Remote Sensing, 87(4), 237–247. doi:10.14358/PERS.87.4.237.
[25] Osama, N., Shao, Z., Ma, Y., Yan, J., Fan, Y., Magdy Habib, S., & Freeshah, M. (2024). The ATL08 as a height reference for the global digital elevation models. Geo-Spatial Information Science, 27(2), 327–346. doi:10.1080/10095020.2022.2087108.
[26] Sadek, M., Li, X., Mostafa, E., Freeshah, M., Kamal, A., Sidi Almouctar, M. A., Zhao, F., & Mustafa, E. K. (2020). Low-Cost Solutions for Assessment of Flash Flood Impacts Using Sentinel-1/2 Data Fusion and Hydrologic/Hydraulic Modeling: Wadi El-Natrun Region, Egypt. Advances in Civil Engineering, 2020, 1–21. doi:10.1155/2020/1039309.
[27] Mati, B. M., Morgan, R. P., Gichuki, F. N., Quinton, J. N., Brewer, T. R., & Liniger, H. P. (2000). Assessment of erosion hazard with the USLE and GIS: A case study of the Upper Ewaso Ng’iro North basin of Kenya. International Journal of Applied Earth Observation and Geoinformation, 2(2), 78–86. doi:10.1016/s0303-2434(00)85002-3.
[28] Fistikoglu, O., & Harmancioglu, N. B. (2002). Integration of GIS with USLE in assessment of soil erosion. Water Resources Management, 16(6), 447–467. doi:10.1023/A:1022282125760.
[29] Gong, W., Liu, T., Duan, X., Sun, Y., Zhang, Y., Tong, X., & Qiu, Z. (2022). Estimating the Soil Erosion Response to Land-Use Land-Cover Change Using GIS-Based RUSLE and Remote Sensing: A Case Study of Miyun Reservoir, North China. Water (Switzerland), 14(5). doi:10.3390/w14050742.
[30] Wang, J., Zhen, J., Hu, W., Chen, S., Lizaga, I., Zeraatpisheh, M., & Yang, X. (2023). Remote sensing of soil degradation: Progress and perspective. International Soil and Water Conservation Research, 11(3), 429–454. doi:10.1016/j.iswcr.2023.03.002.
[31] Životić, L., Perović, V., Jaramaz, D., Ðordević, A., Petrović, R., & Todorović, M. (2012). Application of USLE, GIS, and Remote Sensing in the Assessment of Soil Erosion Rates in Southeastern Serbia. Polish Journal of Environmental Studies, 21(6), 1929-1935.
[32] Ha, N. T. T., Tuyen, T. T., Sarzhanovna, A. T., Thuy, H. T., Luong, V. V., Du, T. D., Tai, D. K., The, H. A., Thanh, N. N., Duong, P. T., Ha, V. T. T., & Khanh, V. T. N. (2023). Potential risks of soil erosion in North-Central Vietnam using remote sensing and GIS. Revista Brasileira de Engenharia Agricola e Ambiental, 27(11), 910–916. doi:10.1590/1807-1929/agriambi.v27n11p910-916.
[33] Cochard, R., Gravey, M., Rasera, L. G., Mariethoz, G., & Kull, C. A. (2023). The nature of a ‘forest transition’ in Thừa Thiên Huế Province, Central Vietnam – A study of land cover changes over five decades. Land Use Policy, 134, 106887. doi:10.1016/j.landusepol.2023.106887.
[34] Van Huynh, C., Pham, T. G., Nguyen, T. Q., Nguyen, L. H. K., Tran, P. T., Le, Q. N. P., & Nguyen, M. T. H. (2020). Understanding indigenous farming systems in response to climate change: An investigation into soil erosion in the mountainous regions of Central Vietnam. Applied Sciences (Switzerland), 10(15), 5091. doi:10.3390/app10155091.
[35] Nguyen, S. H., Nguyen, D. N., Nguyen Thu, N., Pham, H. H., Phan, H. A., & Dao, C. D. (2023). Current Soil Degradation Assessment in the Thua Thien Hue Province, Vietnam, by Multi-Criteria Analysis and GIS Technology. Sustainability (Switzerland), 15(19), 14276. doi:10.3390/su151914276.
[36] Solaimani, K., Modallaldoust, S., & Lotfi, S. (2009). Investigation of land use changes on soil erosion process using geographical information system. International Journal of Environmental Science & Technology, 6(3), 415-424. doi:10.1007/BF03326080.
[37] Tran, M.C. (2021) Research on identifying appropriate models for quantifying soil erosion in typical agricultural cultivation systems on sloped land. Ph.D. Thesis, Vietnam Institute of Water Resources Science, Hanoi, Vietnam.
[38] Thakuriah, G. (2023). GIS-based revised universal soil loss equation for estimating annual soil erosion: a case of lower Kulsi basin, India. SN Applied Sciences, 5(3), 81. doi:10.1007/s42452-023-05303-0.
[39] Zhu, M. (2015). Soil erosion assessment using USLE in the GIS environment: a case study in the Danjiangkou Reservoir Region, China. Environmental Earth Sciences, 73(12), 7899–7908. doi:10.1007/s12665-014-3947-5.
[40] Oliveira, P. T. S., Nearing, M. A., & Wendland, E. (2015). Orders of magnitude increase in soil erosion associated with land use change from native to cultivated vegetation in a Brazilian savannah environment. Earth Surface Processes and Landforms, 40(11), 1524–1532. doi:10.1002/esp.3738.
[41] Borrelli, P., Meusburger, K., Ballabio, C., Panagos, P., & Alewell, C. (2018). Object-oriented soil erosion modelling: A possible paradigm shift from potential to actual risk assessments in agricultural environments. Land Degradation and Development, 29(4), 1270–1281. doi:10.1002/ldr.2898.
[42] Durigon, V. L., Carvalho, D. F., Antunes, M. A. H., Oliveira, P. T. S., & Fernandes, M. M. (2014). NDVI time series for monitoring RUSLE cover management factor in a tropical watershed. International Journal of Remote Sensing, 35(2), 441–453. doi:10.1080/01431161.2013.871081.
[43] Critchley, W., Harari, N., Mollee, E., Mekdaschi-Studer, R., & Eichenberger, J. (2023). Sustainable Land Management and Climate Change Adaptation for Small-Scale Land Users in Sub-Saharan Africa. Land, 12(6), 1206. doi:10.3390/land12061206.
[44] Thu Thuy, N. (2024) Geographical and administrative overview of Luong Son District, Hoa Binh Province. Regional Studies of Vietnam, 15, 45–62.
[45] Hoa Binh Provincial People’s Committee. (2017) Provincial ‘Reducing Emissions from Deforestation and Forest Degradation, and the Role of Conservation, Sustainable Management of Forests and Enhancement of Forest Carbon Stocks in Developing Countries’ Action Plan of Hoa Binh Province for the Period from 2017 to 2020 Towards 2030. Hoa Binh Province, Vietnam.
[46] Panagos, P., Meusburger, K., Ballabio, C., Borrelli, P., & Alewell, C. (2014). Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Science of the Total Environment, 479–480(1), 189–200. doi:10.1016/j.scitotenv.2014.02.010.
[47] Panagos, P., Borrelli, P., & Meusburger, K. (2015). A new European slope length and steepness factor (LS-factor) for modeling soil erosion by water. Geosciences (Switzerland), 5(2), 117–126. doi:10.3390/geosciences5020117.
[48] Wang, B., Zheng, F., & Römkens, M. J. M. (2013). Comparison of soil erodibility factors in USLE, RUSLE2, EPIC and Dg models based on a Chinese soil erodibility database. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 63(1), 69–79. doi:10.1080/09064710.2012.718358.
[49] Panagos, P., Borrelli, P., Meusburger, K., Alewell, C., Lugato, E., & Montanarella, L. (2015). Estimating the soil erosion cover-management factor at the European scale. Land Use Policy, 48, 38–50. doi:10.1016/j.landusepol.2015.05.021.
[50] Vatandaşlar, C., & Yavuz, M. (2017). Modeling cover management factor of RUSLE using very high-resolution satellite imagery in a semiarid watershed. Environmental Earth Sciences, 76(2), 65. doi:10.1007/s12665-017-6388-0.
[51] Almagro, A., Thomé, T. C., Colman, C. B., Pereira, R. B., Marcato Junior, J., Rodrigues, D. B. B., & Oliveira, P. T. S. (2019). Improving cover and management factor (C-factor) estimation using remote sensing approaches for tropical regions. International Soil and Water Conservation Research, 7(4), 325–334. doi:10.1016/j.iswcr.2019.08.005.
[52] TCVN 5299:2009. (2009). Soil quality – Method for determination of soil erosion by rain. Tiêu chuẩn Việt Nam (TCVN), Hanoi, Vietnam. (In Vietnamese).
[53] General Statistics Office of Vietnam. (2021) Hoa Binh Provincial Statistical Yearbook 2021. General Statistics Office of Vietnam, Hanoi, Vietnam.
[54] Elshewy, M. A., Trung Thanh, P., Elsheshtawy, A. M., Refaat, M., & Freeshah, M. (2024). A novel approach for optimizing regional geoid modeling over rugged terrains based on global geopotential models and artificial intelligence algorithms. Egyptian Journal of Remote Sensing and Space Science, 27(4), 656–668. doi:10.1016/j.ejrs.2024.09.002.
[55] Thi My Linh, N., MacDonald, L. H., Gomi, T., & Dung, B. X. (2024). Runoff and erosion from three unpaved road segments in northern Vietnam. Journal of Hydrology: Regional Studies, 51, 101625. doi:10.1016/j.ejrh.2023.101625.
[56] Dung, B. X., Kolyan, C., Thi My Linh, N., & Ravor, S. (2019). Runoff Generation and Soil Erosion at Different Age of Acacia Plantation in Hoa Binh Province, Vietnam. VNU Journal of Science: Earth and Environmental Sciences, 35(3). doi:10.25073/2588-1094/vnuees.4353.
[57] Van Mai, T. (2007). Soil erosion and nitrogen leaching in northern Vietnam: expression and modelling. Ph.D. Thesis, Wageningen University, Wageningen University, Wageningen, Netherlands.
[58] Jouquet, P., Janeau, J. L., Pisano, A., Sy, H. T., Orange, D., Minh, L. T. N., & Valentin, C. (2012). Influence of earthworms and termites on runoff and erosion in a tropical steep slope fallow in Vietnam: A rainfall simulation experiment. Applied Soil Ecology, 61, 161–168. doi:10.1016/j.apsoil.2012.04.004.
[59] Zuazo, V. H. D., & Pleguezuelo, C. R. R. (2008). Soil-erosion and runoff prevention by plant covers. A review. Agronomy for Sustainable Development, 28(1), 65–86. doi:10.1051/agro:2007062.
[60] Mekonnen, M., Keesstra, S. D., Baartman, J. E. M., Stroosnijder, L., & Maroulis, J. (2017). Reducing Sediment Connectivity Through man-Made and Natural Sediment Sinks in the Minizr Catchment, Northwest Ethiopia. Land Degradation and Development, 28(2), 708–717. doi:10.1002/ldr.2629.
[61] Natural Resources Conservation Service. (2013). Field Office Technical Guide (FOTG). Natural Resources Conservation Service, U.S. Department of Agriculture, Washington, United States.
[62] Gao, L., Bowker, M. A., Xu, M., Sun, H., Tuo, D., & Zhao, Y. (2017). Biological soil crusts decrease erodibility by modifying inherent soil properties on the Loess Plateau, China. Soil Biology and Biochemistry, 105, 49–58. doi:10.1016/j.soilbio.2016.11.009.
[63] Lyu, H., Li, Y., Wang, Y., Wang, P., Shang, Y., Yang, X., Wang, F., & Yu, A. (2023). Drive soil nitrogen transformation and improve crop nitrogen absorption and utilization - a review of green manure applications. Frontiers in Plant Science, 14, 1305600. doi:10.3389/fpls.2023.1305600.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.