Influence of Axial Restraint and Fire Exposure Scenarios on the Fire Resistance of One-Way Reinforced Concrete Slabs
Abstract
Doi: 10.28991/CEJ-2025-011-04-03
Full Text: PDF
Keywords
References
EN 1991-1-2. (2002). Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire. The European Union per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC.
ISO 834. (1975). Fire Resistance Tests, Elements of Building Construction. International Organization for Standardization, Geneva, Switzerland.
Buchanan, A. H., & Abu, A. K. (2017). Structural design for fire safety. John Wiley & Sons, New Jersey, United States.
Balaji, A., Nagarajan, P., & Pillai, T. M. (2016). Predicting the response of reinforced concrete slab exposed to fire and validation with IS456 (2000) and Eurocode 2 (2004) provisions. Alexandria Engineering Journal, 55(3), 2699-2707. doi:10.1016/j.aej.2016.06.005.
Bailey, C. G. (2004). Membrane action of slab/beam composite floor systems in fire. Engineering Structures, 26(12), 1691-1703. doi:10.1016/j.engstruct.2004.06.006.
Major, Z., Bodnár, L., Merczel, D. B., Szép, J., & Lublóy, É. (2024). Analysis of the Heating of Steel Structures During Fire Load. Emerging Science Journal, 8(1), 1-16.
Wang, B., Dong, Y. L., & Gao, L. T. (2011). Fire experimental study of four-edge fixed reinforced concrete slab in fire. Advanced Materials Research, 163, 1626-1637. doi:10.4028/www.scientific.net/AMR.163-167.1626. doi:10.28991/ESJ-2024-08-01-01.
Lim, L. C. S., & Wade, C. A. (2002). Experimental fire tests of two-way concrete slabs. Fire Engineering Research Report 02/12, University of Canterbury, Christchurch, New Zealand.
Allam, S. M., Elbakry, H. M., & Rabeai, A. G. (2013). Behavior of one-way reinforced concrete slabs subjected to fire. Alexandria Engineering Journal, 52(4), 749-761. doi:10.1016/j.aej.2013.09.004.
Qiu, P., Duan, J., Yang, Z., Liu, J., & Lu, W. (2024). Research on the Scale Fire Test and Fire Resistance of the One-Way Slab of a Metro. Buildings, 14(6), 1695. doi:10.3390/buildings14061695.
Al-Rousan, R. (2020). Optimum endurance time of reinforced concrete one-way slab subjected to fire. Procedia Manufacturing, 44, 520-527. doi:10.1016/j.promfg.2020.02.260.
Salihu, F., Guri, Z., Cvetkovska, M., & Pllana, F. (2023). Fire Resistance Analysis of Two-Way Reinforced Concrete Slabs. Civil Engineering Journal (Iran), 9(5), 1085–1104. doi:10.28991/CEJ-2023-09-05-05.
Rasheed, M.R., & Mohammed, S.D. (2024). Structural Behavior of Concrete One-Way Slab with Mixed Reinforcement of Steel and Glass Fiber Polymer Bars under Fire Exposure. Engineering, Technology & Applied Science Research, 14(2), 13380–13387. doi:10.48084/etasr.6795.
Kodur, V., Venkatachari, S., Bhatt, P., Matsagar, V. A., & Singh, S. B. (2023). Fire resistance evaluation of concrete beams and slabs incorporating natural fiber-reinforced polymers. Polymers, 15(3), 755. doi:10.3390/polym15030755.
Elwakkad, N. (2023). Behavior of reinforced self-curing concrete slabs exposed to fire. Journal of Engineering Sciences, 51(5), 286-301. doi:10.21608/jesaun.2023.212300.1231.
Shhabat, M., Ashteyat, A., & Abdel-Jaber, M. (2024). Repairing of One-Way Solid Slab Exposed to Thermal Shock Using CFRP: Experimental and Analytical Study. Fibers, 12(2), 18. doi:10.3390/fib12020018
EN 1992-1-2. (2004). Eurocode 2: Design of concrete structures - Part 1-2: General rules. Structural Fire Design, The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC.
SAFIR (2014). A finite element software for analyzing structures in fire. SAFIR-Computer Program, University of Liege, Liege, Belgium.
Sanad, A. M., Lamont, S., Usmani, A. S., & Rotter, J. M. (2000). Structural behaviour in fire compartment under different heating regimes—part 2:(slab mean temperatures). Fire Safety Journal, 35(2), 117-130. doi:10.1016/S0379-7112(00)00025-4.
Terro, M. J. (1991). Numerical Modelling of Thermal and Structural Response of Reinforced Concrete Structures in Fire. Imperial College of Science, Technology and Medicine, University of London, London, United Kingdom.
WFRC. (1987). Ad-Hoc Fire Test Using the Heating Conditions of BS476: Part 8: 1972 on Two 150mm Thick Normal Weight Concrete Slabs. 1987. WARRES No. 40728, Warrington Fire Research Center, (WFRC), London, United Kingdom.
Cvetkovska, M. (2002). Nonlinear Stress Strain Behaviour of RC Elements and Plane Frame Structures Exposed to Fire. Doctoral Dissertation, Ss Cyril and Methodius University, Skopje, Macedonia.
Levesque, A. (2006). Fire Performance of Reinforced Concrete Slabs. Master Thesis, Worcester Polytechnic Institute, Worcester, United States.
Wang, Y., Guo, W., Huang, Z., Long, B., Yuan, G., Shi, W., & Zhang, Y. (2018). Analytical model for predicting the load–deflection curve of post-fire reinforced-concrete slab. Fire Safety Journal, 101, 63-83. doi:10.1016/j.firesaf.2018.09.002.
Salihu, F., & Cvetkovska, M. (2020). Parametric analysis on fire resistance of one way Simply supported reinforced concrete slabs. International Conference on Contemporary Theory and Practice in Construction XIV STEPGRAD, 43-54.
DOI: 10.28991/CEJ-2025-011-04-03
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Fidan Hafez Salihu, Anita Mehmet Gjukaj, Guxim Mustafe Rrudhani, Fatos Emin Pllana, Meri Cvetkovska

This work is licensed under a Creative Commons Attribution 4.0 International License.