Shear Performance of ULCC and PCC: Experimental and Numerical Insights Using DIC and FEM
Downloads
This study investigates the shear behavior of reinforced concrete beams constructed with high-calcium fly ash-based Ultra-Low Carbon Concrete (ULCC) as a sustainable alternative to conventional Portland Cement Concrete (PCC). The objective is to assess ULCC’s structural performance under shear and its potential as a low-carbon substitute. Using a dry-mix method with dry activators, six beams (five ULCC, one PCC) of identical dimensions (150 × 250 × 1800 mm) were tested under four-point bending, with variations in shear reinforcement, flexural reinforcement, and shear span-to-depth (a/d) ratios. Digital Image Correlation (DIC) was employed to monitor crack propagation and strain development, while Finite Element Modeling (FEM) provided numerical validation. Results show that increasing shear reinforcement enhanced capacity by 12.05%, whereas higher (a/d) ratios decreased it by 22.63%; increased flexural reinforcement improved shear resistance by 31.27%. FEM closely matched experimental outcomes, with a load-deflection ratio of 1.01. ULCC outperformed PCC in shear capacity and exceeded ACI 318-19 predictions. The integration of DIC and FEM offers a comprehensive analysis framework, and the findings demonstrate ULCC’s viability as a structurally efficient, environmentally sustainable alternative for shear-critical applications.
Downloads
[1] Rajamane, N. P., Nataraja, M. C., & Lakshmanan, N. (2011). An introduction to geopolymer concrete. Indian Concrete Journal, 85(11), 25–28.
[2] McLellan, B. C., Williams, R. P., Lay, J., Van Riessen, A., & Corder, G. D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. Journal of Cleaner Production, 19(9–10), 1080–1090. doi:10.1016/j.jclepro.2011.02.010.
[3] Flatt, R. J., Roussel, N., & Cheeseman, C. R. (2012). Concrete: An eco material that needs to be improved. Journal of the European Ceramic Society, 32(11), 2787–2798. doi:10.1016/j.jeurceramsoc.2011.11.012.
[4] Gartner, E., & Hirao, H. (2015). A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. Cement and Concrete Research, 78, 126–142. doi:10.1016/j.cemconres.2015.04.012.
[5] Martínez, J. D. R., Ríos, J. D., Cifuentes, H., & Leiva, C. (2025). Multi-Scale Toughening of UHPC: Synergistic Effects of Carbon Microfibers and Nanotubes. Fibers, 13(4). doi:10.3390/fib13040049.
[6] Zhang, L., Bian, M., Xiao, Z., Wang, Y., Xu, K., Han, B., & Huang, H. (2024). Using nano-CaCO3 and ceramic tile waste to design low-carbon ultra-high performance concrete. Nanotechnology Reviews, 13(1), 20230198. doi:10.1515/ntrev-2023-0198.
[7] hang, G., Chen, Z., & Zheng, Y. (2024). Research on High Toughness Concrete based on Green Ultra-low Carbon. Academic Journal of Science and Technology, 12(1), 329–334. doi:10.54097/wanhfz37.
[8] Ryu, G. S., Lee, Y. B., Koh, K. T., & Chung, Y. S. (2013). The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Construction and Building Materials, 47, 409–418. doi:10.1016/j.conbuildmat.2013.05.069.
[9] Tajunnisa, Y., Sugimoto, M., Sato, T., Jaya, J., & Shigeishi, M. (2016). Characterization of Low Calcium Fly Ash for Geopolymer Paste. 16th International Conference and Exhibition: Structural Faults & Repair, Scotland, United Kingdom.
[10] Tajunnisa, Y., Sugimoto, M., Sato, T., & Shigeishi, M. (2017). A study on factors affecting geopolymerization of low calcium fly ash. International Journal of GEOMATE, 13(36), 100–107. doi:10.21660/2017.36.84153.
[11] Glasby, T., Day, J., Genrich, R., & Kemp, M. (2015). Commercial Scale Geopolymer Concrete Construction. The Saudi International Building and Constructions Technology Conference, 26-29 October, 2015, Riyadh, Saudi Arabia.
[12] Glasby, T., Day, J., Genrich, R., & Aldred, J. (2015). EFC geopolymer concrete aircraft pavements at Brisbane West Wellcamp Airport. 27th Biennial National Conference of the Concrete Institute of Australia (CIA), 30 August - 2 September, Melbourne, Australia.
[13] Ma, C. K., Awang, A. Z., & Omar, W. (2018). Structural and material performance of geopolymer concrete: A review. Construction and Building Materials, 186, 90–102. doi:10.1016/j.conbuildmat.2018.07.111.
[14] Sujatha, T., Kannapiran, K., & Nagan, S. (2012). Strength assessment of heat cured geopolymer concrete slender column. Asian Journal of Civil Engineering, 13(5), 635–646.
[15] Albitar, M., Mohamed Ali, M. S., & Visintin, P. (2017). Experimental study on fly ash and lead smelter slag-based geopolymer concrete columns. Construction and Building Materials, 141, 104–112. doi:10.1016/j.conbuildmat.2017.03.014.
[16] Rahman, M., & Sarker, P. K. (2011). Geopolymer concrete columns under combined axial load and biaxial bending. In Proceedings of the Concrete 2011 Conference, 12 October, Perth, Australia.
[17] Sumajouw, M. D. J., & Rangan, B. V. (2006). Low-calcium fly ash-based geopolymer concrete: reinforced beams and columns. Research Report GC 3, Curtin University of Technology, , Perth, Australia.
[18] Ganesan, N., Abraham, R., Raj, S. D., & Namitha, K. (2016). Effect of fibres on the strength and behaviour of GPC columns. Magazine of Concrete Research, 68(2), 99–106. doi:10.1680/jmacr.15.00049.
[19] Nagan, S., & Karthiyaini, S. (2014). A study on load carrying capacity of fly ash based polymer concrete columns strengthened using double layer GFRP wrapping. Advances in Materials Science and Engineering, 2014. doi:10.1155/2014/312139.
[20] Al-Mashhadani, M. M., Canpolat, O., Aygörmez, Y., Uysal, M., & Erdem, S. (2018). Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites. Construction and building materials, 167, 505-513. doi:10.1016/j.conbuildmat.2018.02.061.
[21] Devika, C. P., & Deepthi, R. (2015). Study of flexural behavior of hybrid fibre reinforced geopolymer concrete beam. In International Journal of Science and Research, 4(7), 130-135.
[22] Nagan, S., & Mohana, R. (2014). Behaviour of geopolymer ferrocement slabs subjected to impact. Iranian Journal of Science and Technology. Transactions of Civil Engineering, 38(C1+), 223.
[23] Rajendran, M., & Soundarapandian, N. (2013). An experimental investigation on the flexural behavior of geopolymer ferrocement slabs. Journal of Engineering and Technology, 3(2), 97. doi:10.4103/0976-8580.113047.
[24] Visintin, P., Mohamed Ali, M. S., Albitar, M., & Lucas, W. (2017). Shear behaviour of geopolymer concrete beams without stirrups. Construction and Building Materials, 148, 10–21. doi:10.1016/j.conbuildmat.2017.05.010.
[25] Yacob, N. S., ElGawady, M. A., Sneed, L. H., & Said, A. (2019). Shear strength of fly ash-based geopolymer reinforced concrete beams. Engineering Structures, 196. doi:10.1016/j.engstruct.2019.109298.
[26] Darmawan, M. S., Bayuaji, R., Sugihardjo, H., Husin, N. A., & Affandhie, R. B. A. (2019). Shear strength of geopolymer concrete beams using high calcium content fly ash in a marine environment. Buildings, 9(4), 98. doi:10.3390/buildings9040098.
[27] Yost, J. R., Radlińska, A., Ernst, S., Salera, M., & Martignetti, N. J. (2013). Structural behavior of alkali activated fly ash concrete. Part .Structural testing and experimental findings. Materials and Structures/Materiaux et Constructions, 46(3), 449–462. doi:10.1617/s11527-012-9985-0.
[28] Darmawan, M. S., Tajunnisa, Y., Suprobo, P., Sutrisno, W., & Aziz, M. W. (2022). Comparative Study of Flexural Performance of Geopolymer and Portland Cement Concrete Beam Using Finite Element Analysis. International Journal of GEOMATE,. 23(95), 1-9. doi:10.21660/2022.95.j2340.
[29] Tambusay, A., Suryanto, B., & Suprobo, P. (2020). Nonlinear finite element analysis of reinforced concrete beam-column joints under reversed cyclic loading. IOP Conference Series: Materials Science and Engineering, 930(1), 012055. doi:10.1088/1757-899X/930/1/012055.
[30] Chong, K., Suryanto, B., Tambusay, A., & Suprobo, P. (2022). Nonlinear Analysis of Reinforced Geopolymer Concrete Beams. Civil Engineering Dimension, 24(1), 1–10. doi:10.9744/ced.24.1.1-10.
[31] Tambusay, A., Suprobo, P., Suryanto, B., & Don, W. (2021). Application of nonlinear finite element analysis on shear-critical reinforced concrete beams. Journal of Engineering and Technological Sciences, 53(4). doi:10.5614/j.eng.technol.sci.2021.53.4.8.
[32] Antoni, A., Wijaya, S. W., Satria, J., Sugiarto, A., & Hardjito, D. (2016). The Use of Borax in Deterring Flash Setting of High Calcium Fly Ash Based Geopolymer. Materials Science Forum, 857, 416–420. doi:10.4028/www.scientific.net/msf.857.416.
[33] Topark-Ngarm, P., Chindaprasirt, P., & Sata, V. (2015). Setting Time, Strength, and Bond of High-Calcium Fly Ash Geopolymer Concrete. Journal of Materials in Civil Engineering, 27(7), 04014198. doi:10.1061/(asce)mt.1943-5533.0001157.
[34] Bayuaji, R., Yasin, A. K., Susanto, T. E., & Darmawan, M. S. (2017). A review in geopolymer binder with dry mixing method (geopolymer cement). AIP Conference Proceedings, 1887. doi:10.1063/1.5003505.
[35] Mo, Z., Li, C., Zhang, W., Liu, C., Sun, Y., Liu, R., & Lu, X. (2024). Cryogenic Digital Image Correlation as a Probe of Strain in Iron-Based Superconductors. Chinese Physics Letters, 41(10), 107102. doi:10.1088/0256-307X/41/10/107102.
[36] Wubalem, A., Caselle, C., Taboni, B., & Umili, G. (2025). Effects of Rock Texture on Digital Image Correlation. Geosciences (Switzerland), 15(4), 145. doi:10.3390/geosciences15040145.
[37] Zhang, D., Huang, G., Li, L., He, S., Su, Y., Huang, S., Jiang, M., & Wang, W. (2025). Preprocessing methods for reducing the impact of image decorrelation in laser speckle digital image correlation. Optics Continuum, 4(3), 476–487. doi:10.1364/OPTCON.542356.
[38] Tong, Z., Frolkin, D., Shi, H., LaRue, T., Rausch, M., & Yang, J. (2024). 3D Stereo Adaptive Mesh Augmented Lagrangian Digital Image Correlation. Research Square, 1-41. doi:10.21203/rs.3.rs-5507109/v1.
[39] Phoo-Ngernkham, T., Phiangphimai, C., Damrongwiriyanupap, N., Hanjitsuwan, S., Thumrongvut, J., & Chindaprasirt, P. (2018). A Mix Design Procedure for Alkali-Activated High-Calcium Fly Ash Concrete Cured at Ambient Temperature. Advances in Materials Science and Engineering, 2460403. doi:10.1155/2018/2460403.
[40] Xie, T., Visintin, P., Zhao, X., & Gravina, R. (2020). Mix design and mechanical properties of geopolymer and alkali activated concrete: Review of the state-of-the-art and the development of a new unified approach. Construction and Building Materials, 256. doi:10.1016/j.conbuildmat.2020.119380.
[41] Chindaprasirt, P., Boonbamrung, T., Poolsong, A., & Kroehong, W. (2021). Effect of elevated temperature on polypropylene fiber reinforced alkali-activated high calcium fly ash paste. Case Studies in Construction Materials, 15, e00554. doi:10.1016/j.cscm.2021.e00554.
[42] Husin, N. A., Bayuaji, R., Tajunnisa, Y., Darmawan, M. S., & Suprobo, P. (2020). Performance of high calcium fly ash based geopolymer concrete in chloride environment. International Journal of GEOMATE, 19(74), 107–113. doi:10.21660/2020.74.56966a.
[43] Piscesa, B., Attard, M. M., Prasetya, D., & Suprobo, P. (2019). Finite element analysis of the Circular Double Skin Tubular Concrete (DSTC) under concentric loading. MATEC Web of Conferences, 276, 01009. doi:10.1051/matecconf/201927601009.
[44] Piscesa, B., Attard, M. M., & Samani, A. K. (2014). Refined plasticity model for concrete stress-strain relationship part I: prediction of peak stress and residual stress. 23rd Australasian Conference on the Mechanics of Structures and Materials (ACMSM23), 9-12 December, 2014, Byron Bay, Australia.
[45] Li, Z. J., Balendra, T., Tan, K. H., & Kong, K. H. (2005). Finite element modeling of cyclic behavior of shear wall structure retrofitted using GFRP. ACI Special Publication, 230(74), 1350-1324.
[46] Piscesa, B., Attard, M. M., & Samani, A. K. (2017). Plastic dilation rate characteristic of concrete confined with steel tube. COMPLAS XIV: proceedings of the XIV International Conference on Computational Plasticity: fundamentals and applications (CIMNE), . 5-7 September, 2017, Barcelona, Spain.
[47] Piscesa, B., Attard, M. M., & Samani, A. K. (2014). Refined plasticity model for concrete stress-strain relationship part II: inclusion of size effect. 23rd Australasian Conference on The Mechanics of Structures and Materials (ACMSM23), 9-12 December, 2014, Bryon Bay, Australia.
[48] Piscesa, B., Attard, M. M., Samani, A. K., & Tangaramvong, S. (2017). Plasticity constitutive model for stress-strain relationship of confined concrete. ACI Materials Journal, 114(2), 361–371. doi:10.14359/51689428.
[49] Piscesa, B., Alrasyid, H., Prasetya, D., & Iranata, D. (2021). Numerical Investigation of Reinforced Concrete Beam Due to Shear Failure. IPTEK The Journal for Technology and Science, 31(3), 373. doi:10.12962/j20882033.v31i3.7385.
[50] Bentz, E. (2000). Sectional analysis of reinforced concrete members. Ph.D. Thesis, University of Toronto, Toronto, Canada.
[51] Vecchio, F. J., & Shim, W. (2004). Experimental and Analytical Reexamination of Classic Concrete Beam Tests. Journal of Structural Engineering, 130(3), 460–469. doi:10.1061/(asce)0733-9445(2004)130:3(460).
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.