Web-Crippling Behaviour of Cold-Formed Screw Fastened Rectangular Hollow Flange Z-Section Beams Under Two-Flange Load Cases
Downloads
This study investigates to update the web-crippling coefficients of cold-formed screw-fastened hollow flange Z-section (SFHZ) beams under End-Two-Flange (ETF) and Interior-Two-Flange (ITF) loading conditions. As coefficients are available in AISI standards to estimate the web crippling capacity of Z-sections, experimental program is carried out on 48 number of SFHZ specimens. An extensive parametric study considering the effects of web slenderness, material strength, and support length is conducted for 240 finite element models. Both experimental results and Finite Element Analysis (FEA) were used to predict web-crippling capacities and verified with current AISI predictions. The findings reveal that existing specifications are un-conservative for both ETF and ITF load cases. The parameters such as web height-to-thickness, inside bend radius-to-thickness, and bearing length-to-thickness ratios are the key factors influencing the prediction of web crippling capacity of SFHZ sections. As a result, the study proposes updated web-crippling coefficients that offer improved accuracy in predicting SFHZ section performance under two-flange loading conditions.
Downloads
[1] Meza, F. J., Becque, J., & Hajirasouliha, I. (2020). Experimental study of cold-formed steel built-up columns. Thin-Walled Structures, 149, 106291. doi:10.1016/j.tws.2019.106291.
[2] N.Usefi, Sharafi, P., Mortazavi, M., Ronagh, H., & Samali, B. (2021). Structural performance and sustainability assessment of hybrid-cold formed modular steel frame. Journal of Building Engineering, 34, 101895. doi:10.1016/j.jobe.2020.101895.
[3] Thirunavukkarasu, K., Kanthasamy, E., Gatheeshgar, P., Poologanathan, K., Rajanayagam, H., Suntharalingam, T., & Dissanayake, M. (2021). Sustainable performance of a modular building system made of built-up cold-formed steel beams. Buildings, 11(10), 460. doi:10.3390/buildings11100460.
[4] Winter, G., & Pian, R. H. J. (1946). Crushing strength of thin steel webs. Cornell Bulletin, 35, 1-24.
[5] AISI S100-16. (2016). North American Specification for the Design of Cold-Formed Steel Structural Members. American Iron and Steel Institute (AISI), Washington, United States.
[6] AS/NZS 4600. (2018). Australian / New Zealand Standard TM Cold-formed steel structures. Standard Australia, Sydney, Australia.
[7] S136-94. (1994). Cold Formed Steel Structural Members. Canadian Standards Association, Toronto, Canada.
[8] Hetrakul, N., & Yu, W. W. (1978). Structural behavior of beam webs subjected to web crippling and a combination of web crippling and bending. Final Report, Civil Engineering Study, University of Missouri-Rolla, Rolla, United States.
[9] Santaputra, C. (1986). Web crippling of high strength cold-formed steel beams. Ph.D. Thesis, University of Missouri-Rolla, Rolla, United States.
[10] Bhakta, B. H., LaBoube, R. A., & Yu, W. W. (1992). The effect of flange restraint on web crippling strength. Technical Report, Missouri University of Science and Technology, Rolla, United States.
[11] Janarthanan, B., Mahendran, M., & Gunalan, S. (2019). Numerical modelling of web crippling failures in cold-formed steel unlipped channel sections. Journal of Constructional Steel Research, 158, 486–501. doi:10.1016/j.jcsr.2019.04.007.
[12] Janarthanan, B., & Mahendran, M. (2020). Numerical study of cold-formed steel channel sections under combined web crippling and bending action. Thin-Walled Structures, 152, 106766. doi:10.1016/j.tws.2020.106766.
[13] Kanthasamy, E., Chandramohan, D. L., Shanmuganathan, G., Poologanathan, K., Gatheeshgar, P., Corradi, M., & Mcintosh, A. (2022). Web crippling behaviour of cold-formed high-strength steel unlipped channel beams under End-One-Flange load case. Case Studies in Construction Materials, 16. doi:10.1016/j.cscm.2022.e01022.
[14] Young, B., Ellobody, E., & He, J. (2023). Web crippling tests on cold-formed high strength steel channel sections having different stiffened flanges and stiffened web. Thin-Walled Structures, 190, 110995. doi:10.1016/j.tws.2023.110995.
[15] Lan, X., Zhang, J. J., & Zhao, O. (2024). High strength steel unlipped channel sections subjected to ETF loading: Laboratory testing, numerical simulations and web crippling design. Engineering Structures, 319, 118852. doi:10.1016/j.engstruct.2024.118852.
[16] He, J., & Ellobody, E. (2024). Nonlinear web crippling analysis and design of cold-formed high strength steel channel sections having different stiffened flanges. Thin-Walled Structures, 197, 111651. doi:10.1016/j.tws.2024.111651.
[17] Prabaharan, V., & Akhas, P. K. (2025). Evaluating the influence of stiffener in the bending capacity of cold formed steel C-section. Innovative Infrastructure Solutions, 10(3), 118. doi:10.1007/s41062-025-01914-1.
[18] McIntosh, A., Kanthasamy, E., Poologanathan, K., Gunalan, S., Gatheeshgar, P., Corradi, M., & Higgins, C. (2022). Web crippling design of channel beams: Carbon steel, stainless steel and aluminium. Journal of Constructional Steel Research, 196, 107427. doi:10.1016/j.jcsr.2022.107427.
[19] Chen, B., Roy, K., Fang, Z., Uzzaman, A., Chi, Y., & Lim, J. B. P. (2021). Web crippling capacity of fastened cold-formed steel channels with edge-stiffened web holes, un-stiffened web holes and plain webs under two-flange loading. Thin-Walled Structures, 163, 107666. doi:10.1016/j.tws.2021.107666.
[20] Alsanat, H., Gunalan, S., Poologanathan, K., & Guan, H. (2021). Web crippling investigations of aluminium lipped channel sections under one-flange loading conditions. Thin-Walled Structures, 166, 108025. doi:10.1016/j.tws.2021.108025.
[21] Sundararajah, L., Mahendran, M., & Keerthan, P. (2019). Numerical Modeling and Design of Lipped Channel Beams Subject to Web Crippling under One-Flange Load Cases. Journal of Structural Engineering, 145(10). doi:10.1061/(asce)st.1943-541x.0002367.
[22] Badawy Abu-Sena, A. B., Abdelfattah, F. A., Soliman, M. S., & Saleh, M. S. R. (2020). An experimentally verified new approach for web crippling design of cold-formed steel Z-Sections. Journal of Constructional Steel Research, 164, 105813. doi:10.1016/j.jcsr.2019.105813.
[23] Young, B., & Ellobody, E. (2023). Experimental investigation on cold-formed steel Z-sections having different stiffened flanges undergoing web crippling. Engineering Structures, 286, 116144. doi:10.1016/j.engstruct.2023.116144.
[24] Siva, K., & Visuvasam, J. (2024). An Optimally Designed Cold-Formed Steel Beam Thickness Selection for Reducing Web-Crippling Smartly. International Journal of Steel Structures, 24(3), 515–528. doi:10.1007/s13296-024-00833-8.
[25] Schuster, R. M., & Beshara, B. (2000). Web crippling data and calibrations of cold formed steel members. American Iron and Steel Institute (AISI), Washington, United States.
[26] Holesapple, M. W., & LaBoube, R. A. (2003). Web crippling of cold-formed steel beams at end supports. Engineering Structures, 25(9), 1211–1216. doi:10.1016/S0141-0296(03)00076-2.
[27] Choy, M. Y., Jia, X. F., Yuan, X., Zhou, J., Wang, H. S., & Yu, C. (2014). Direct strength method for web crippling of cold-formed steel C- And Z- sections subjected to two-flange loading. Structural Stability Research Council Annual Stability Conference 2014, SSRC 2014, 99–111.
[28] Zhou, F., Chhun, N., & Cai, Y. (2023). Numerical investigation and design of cold-formed lean duplex stainless steel Z-sections undergoing web crippling. Thin-Walled Structures, 183, 110324. doi:10.1016/j.tws.2022.110324.
[29] Dwivedi, R., & Vyavahare, A. Y. (2023). Numerical Investigation into Web Crippling of Cold-Formed Lipped Z-sections under Two-Flange Loadings. International Journal of Steel Structures, 23(3), 627–644. doi:10.1007/s13296-023-00717-3.
[30] Misiek, T., & Belica, A. (2019). Calibration of European web-crippling equations for cold-formed C- and Z-sections. Steel Construction, 12(1), 31–43. doi:10.1002/stco.201800006.
[31] Dara, M. (2015). Direct Strength Method for Web Crippling of Cold-formed Steel C- and Zsections Subjected to One-flange Loading Martin Dara. Journal of Steel Structures & Construction, 1(1), 4. doi:10.4172/2472-0437.1000105.
[32] Siva, K., Visuvasam, J., & Srikanth, D. (2025). Review of Cold-Formed Steel Z-Section Beams: Design Approaches and Performance Analysis. Structural Design of Tall and Special Buildings, 34(2), e2212. doi:10.1002/tal.2212.
[33] Bock, M., & Real, E. (2014). Strength curves for web crippling design of cold-formed stainless steel hat sections. Thin-Walled Structures, 85, 93–105. doi:10.1016/j.tws.2014.07.021.
[34] Chen, Z., Pham, C. H., & Hancock, G. J. (2025). Plastic mechanism models for use in DSM localised loading design of hat sections. Thin-Walled Structures, 206, 112683. doi:10.1016/j.tws.2024.112683.
[35] Jing, Y., Jiang, K., Zhao, O., & Gardner, L. (2024). Web crippling of stainless steel built-up I-sections under End-Two-Flange loading: Tests, simulations and design. Engineering Structures, 304, 117576. doi:10.1016/j.engstruct.2024.117576.
[36] Martins, A. D., Teixeira, Â. P., Silvestre, N., & Correia, J. R. (2025). Reliability-Based Code Calibration of Pultruded Glass Fibre-Reinforced Polymer I-Section Beams Under End-Two-Flange and Interior-Two-Flange Web-Crippling Loading Cases. Engineerin, 1-37. doi:10.1016/j.eng.2025.03.019.
[37] Put, B. M., Pi, Y.-L., & Trahair, N. S. (1999). Lateral Buckling Tests on Cold-Formed Channel Beams. Journal of Structural Engineering, 125(5), 532–539. doi:10.1061/(asce)0733-9445(1999)125:5(532).
[38] Sundararajah, L., Mahendran, M., & Keerthan, P. (2018). Design of SupaCee Sections Subject to Web Crippling under One-Flange Load Cases. Journal of Structural Engineering, 144(12), 04018222. doi:10.1061/(asce)st.1943-541x.0002206.
[39] Ye, J., Hajirasouliha, I., Becque, J., & Eslami, A. (2016). Optimum design of cold-formed steel beams using Particle Swarm Optimisation method. Journal of Constructional Steel Research, 122, 80–93. doi:10.1016/j.jcsr.2016.02.014.
[40] Gatheeshgar, P., Poologanathan, K., Gunalan, S., Shyha, I., Tsavdaridis, K. D., & Corradi, M. (2020). Optimal design of cold-formed steel lipped channel beams: Combined bending, shear, and web crippling. Structures, 28, 825–836. doi:10.1016/j.istruc.2020.09.027.
[41] Hussein, A. B., & Hussein, D. B. (2024). Effects of Lip Length and Inside Radius-to-Thickness Ratio on Buckling Behavior of Cold-Formed Steel C-Sections. Buildings, 14(3), 587. doi:10.3390/buildings14030587.
[42] Hussein, D. B., & Hussein, A. B. (2024). Investigating the Factors Influencing the Strength of Cold-Formed Steel (CFS) Sections. Buildings, 14(4), 1127. doi:10.3390/buildings14041127.
[43] Dwivedi, R., & Vyavahare, A. Y. (2023). Experimental investigation on cold-formed Z-sections under two-flange loadings. Engineering Structures, 297, 116974. doi:10.1016/j.engstruct.2023.116974.
[44] Taimur, M. A., Ahmad, J., Shakeel, S., & Usman, M. (2024). Effect of web holes on web crippling capacity of rectangular hollow steel sections under two flange loadings. Journal of Constructional Steel Research, 222, 108985. doi:10.1016/j.jcsr.2024.108985.
[45] Yun, X., Meng, X., & Gardner, L. (2022). Design of cold-formed steel SHS and RHS beam–columns considering the influence of steel grade. Thin-Walled Structures, 171. doi:10.1016/j.tws.2021.108600.
[46] Thirunavukkarasu, K., Kanthasamy, E., Poologanathan, K., Gunalan, S., Gatheeshgar, P., Tsavdaridis, K. D., & Corradi, M. (2023). Flexural behaviour and design rules for SupaCee sections with web openings. Journal of Building Engineering, 63. doi:10.1016/j.jobe.2022.105539.
[47] Lalvani, H., & Mandal, P. (2021). Cold forming of Al-5251 and Al-6082 tailored welded blanks manufactured by laser and electron beam welding. Journal of Manufacturing Processes, 68, 1615–1636. doi:10.1016/j.jmapro.2021.06.070.
[48] Niu, S., Ma, Y., Lou, M., Zhang, C., & Li, Y. (2020). Joint formation mechanism and performance of resistance rivet welding (RRW) for aluminum alloy and press hardened steel. Journal of Materials Processing Technology, 286, 116830. doi:10.1016/j.jmatprotec.2020.116830.
[49] Rasmussen, K. J. R., Khezri, M., Schafer, B. W., & Zhang, H. (2020). The mechanics of built-up cold-formed steel members. Thin-Walled Structures, 154, 106756. doi:10.1016/j.tws.2020.106756.
[50] Steau, E., Mahendran, M., & Ariyanayagam, A. (2021). Sequentially coupled structural modelling of LSF floor-ceiling systems. Journal of Constructional Steel Research, 187, 106972. doi:10.1016/j.jcsr.2021.106972.
[51] Xue, J., Ma, S., Chen, X., Wu, Q., & Akbar, M. (2023). Finite element modeling of assembling rivet-fastened rectangular hollow flange beams in bending. Journal of Constructional Steel Research, 211. doi:10.1016/j.jcsr.2023.108177.
[52] Steau, E., Mahendran, M., & Keerthan, P. (2015). Web crippling tests of Rivet Fastened Rectangular Hollow Flange Channel Beams under Two Flange Load Cases. Thin-Walled Structures, 95, 262–275. doi:10.1016/j.tws.2015.06.008.
[53] Keerthan, P., & Mahendran, M. (2016). Experimental study on web crippling strength of hollow flange channels under end-one-flange and interior-one-flange load cases. Advances in Structural Engineering, 19(6), 966–981. doi:10.1177/1369433216630462.
[54] Wanniarachchi, K. S., & Mahendran, M. (2017). Experimental study of the section moment capacity of cold-formed and screw-fastened rectangular hollow flange beams. Thin-Walled Structures, 119, 499–509. doi:10.1016/j.tws.2017.05.033.
[55] Ishqy, M. F. M., Wanniarachchi, S., & Poologanathan, K. (2022). Shear behaviour of screw fastened rectangular hollow flange beams with web openings. Journal of Constructional Steel Research, 189, 107019. doi:10.1016/j.jcsr.2021.107019.
[56] Maali, M. S., Tavlaşoğlu, M. E., & Maali, M. (2025). Experimental study on the cold-formed steel beam-to-column screw connections for seismic application. Structures, 72, 108173. doi:10.1016/j.istruc.2024.108173.
[57] Li, H., Shi, Y., Xiang, Y., & Ran, X. (2025). Shear behavior of screw connections: Experiment, analysis, and application in CFS trusses. Structures, 73, 108405. doi:10.1016/j.istruc.2025.108405.
[58] Ho, H. C., Chung, K. F., Huang, M. X., Nethercot, D. A., Liu, X., Jin, H., Wang, G. D., & Tian, Z. H. (2020). Mechanical properties of high strength S690 steel welded sections through tensile tests on heat-treated coupons. Journal of Constructional Steel Research, 166, 105922. doi:10.1016/j.jcsr.2019.105922.
[59] Cooray, K. ., & Tharmarajah, G. (2023). Durability of Cold Formed Steel Structures used in residential and industrial construction. Proceedings of the SLIIT International Conference on Engineering and Technology, 245–255. doi:10.54389/rica2325.
[60] Ye, J., Quan, G., Yun, X., Guo, X., & Chen, J. (2022). An improved and robust finite element model for simulation of thin-walled steel bolted connections. Engineering Structures, 250, 113368. doi:10.1016/j.engstruct.2021.113368.
[61] Eid, N., & Joó, A. L. (2023). Simplified numerical model development for advanced design of lightweight-concrete encased cold-formed steel shear wall panels. SN Applied Sciences, 5(12), 366. doi:10.1007/s42452-023-05590-7.
[62] Dar, M. A., Subramanian, N., Anbarasu, M., Ghowsi, A. F., Arif, P. A., & Dar, A. R. (2021). Testing and FE simulation of lightweight CFS composite built-up columns: Axial strength and deformation behaviour. Thin-Walled Structures, 167, 108222. doi:10.1016/j.tws.2021.108222.
[63] Elyasi, N., Shahzamanian, M., Lin, M., Westover, L., Li, Y., Kainat, M., Yoosef-Ghodsi, N., & Adeeb, S. (2021). Prediction of Tensile Strain Capacity for X52 Steel Pipeline Materials Using the Extended Finite Element Method. Applied Mechanics, 2(2), 209–225. doi:10.3390/applmech2020013.
[64] Pavatharini, P. (2022). Experimental and Analytical Study of Built Up section of Cold Formed Steel (CFS) by Bolted Connection. International Research Journal of Innovations in Engineering and Technology, 6(4), 86–93. doi:10.47001/IRJIET/2022.604018.
[65] Xin, R., Le, V. T., & Goo, N. S. (2022). Buckling identification in composite cylindrical shells with measured imperfections using a Multi-DIC method and finite element analysis. Thin-Walled Structures, 177, 109436. doi:10.1016/j.tws.2022.109436.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.