Optimization Framework for ASIAN and National Road Networks in Lao PDR Using the Stochastic Markov Model

Souvikhane Hanpasith, Felix Obunguta, Kotaro Sasai, Kiyoyuki Kaito

Abstract


Developing effective road network management is crucial for the socioeconomic development of developing countries, particularly the Lao People’s Democratic Republic (Lao PDR or Laos). The current road maintenance system in Lao PDR uses a traditional reactive maintenance approach, addressing road deterioration only after the condition reaches a critical state. This study proposes a stochastic Markov Decision Process (MDP) framework to enhance traditional road management practices. The proposed MDP framework shifts from a conventional reactive to a proactive strategy by considering probabilistic pavement performance and optimally allocating funding to rapidly deteriorating sections. This study enables decision-makers to determine the optimal intervention strategies based on different scenarios. The comparison of the ASIAN Road network, high technical design and construction, and the National Road network, standard technical design and construction, in different scenarios provides a workable framework for maintaining Laos, and other developing countries, road condition despite limited resources and sustainable development concerns. This comprehensive framework includes estimating deterioration rates, defining policies, conducting life-cycle cost (LCC) analysis, and determining optimal strategies that minimize LCC subject to financial and performance constraints. This study highlights significant improvements in decision-making, particularly in resource allocation, by creating innovative and preventive approaches that enhance the efficiency of road management systems and ensure sustainable maintenance practices in Lao PDR.

 

Doi: 10.28991/CEJ-2025-011-05-023

Full Text: PDF


Keywords


Optimum Road Intervention Strategy; Markov Decision Process; Laos Road Management Systems; Life-Cycle Cost Analysis.

References


MPWT. (2022). MPWT Yearly Statistic 2021. Ministry of Public Works and Transport, Vientiane, Lao PDR.

Ishida, M. (2019). Inland ASEAN road connectivity: Challenges and prospects. Cross-Border Transport Facilitation in Inland ASEAN and the ASEAN Economic Community; ERIA and IDE-JETR, Jakarta, Indonesia.

Kerali, H. R. (2001, May). The role of HDM-4 in road management. Proceedings, First Road Transportation Technology Transfer Conference in Africa, Ministry of Works, Tanzania, 23-25 May, Arusha, Tanzania.

Li, N., Haas, R., & Xie, W. C. (1997). Investigation of relationship between deterministic and probabilistic prediction models in pavement management. Transportation Research Record, 1592, 70–79. doi:10.3141/1592-09.

MPWT. (2022). 3-Year Rolling Road Maintenance Plan 2022–2024. Ministry of Public Works and Transport, Vientiane, Lao PDR.

Bennett, C. R. (2008). Success Factors for Road Management Systems. Infrastructure Reporting and Asset Management, 81–85, American Society of Civil Engineers, Reston, United States. doi:10.1061/9780784409589.ch11.

Thube, D., & Thube, A. (2013). Software development for calibration of highway development and management tool (HDM-4) for local conditions. International Journal of Structural and Civil Engineering Research, 2(1), 95-104.

Robinson, R., Danielson, U., & Snaith, M. (1998). Road maintenance management-concepts and systems. Red Globe Press, London, United Kingdom. doi:10.1007/978-1-349-14676-5.

Obunguta, F., Kaito, K., Sasai, K., Kobayashi, K., Matsushima, K., & Bakamwesiga, H. (2024). Generating Near-Optimal Road Condition–Capacity Improvement Decisions Using Monte Carlo Simulations. Journal of Infrastructure Systems, 30(4). doi:10.1061/jitse4.iseng-2429.

Nakazato, Y., Mizutani, D., & Fukuyama, S. (2023). Optimal Repair Policies for Infrastructure Systems with Life Cycle Cost Minimization and Annual Cost Leveling. Journal of Infrastructure Systems, 29(3), 4023021. doi:10.1061/jitse4.iseng-2169.

Nakazato, Y., & Mizutani, D. (2024). 365-Day Sectional Work Zone Schedule Optimization for Road Networks Considering Economies of Scale and User Cost. Computer-Aided Civil and Infrastructure Engineering, 39(15), 2270–2298. doi:10.1111/mice.13273.

Zhang, L., Gu, W., Byon, Y. J., & Lee, J. (2023). Condition-based pavement management systems accounting for model uncertainty and facility heterogeneity with belief updates. Transportation Research Part C: Emerging Technologies, 148, 104054. doi:10.1016/j.trc.2023.104054.

Obunguta, F., Matsushima, K., & Bakamwesiga, H. (2022). Social Cost Optimization Model and Empirical Evaluation of Intervention Effects on Ugandan Road Pavements. Journal of Infrastructure Systems, 28(4), 5022005. doi:10.1061/(asce)is.1943-555x.0000707.

Harvey, M. O. (2024). Estimating from an optimisation model the cost of restricting road maintenance funding for a large network. International Journal of Pavement Engineering, 25(1), 2400540. doi:10.1080/10298436.2024.2400540.

Zeng, Q., Xiao, F., Sun, X., Yang, S., & Cui, Q. (2024). An Improved Two-Stage Bottom-Up Optimization Approach for Pavement Maintenance and Rehabilitation Decision Making. Journal of Transportation Engineering, Part B: Pavements, 150(3), 4024038. doi:10.1061/jpeodx.pveng-1537.

Puterman, M. L. (1994). Markov Decision Processes. Wiley Series in Probability and Statistics, John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470316887.

Feinberg, E. A., & Shwartz, A. (2012). Handbook of Markov decision processes: methods and applications. Springer Science & Business Media, Berlin, Germany.

Yates, R. D., & Goodman, D. J. (1999). Probability and stochastic processes: A friendly introduction for electrical and computer engineers. Computers & Mathematics with Applications, 37(3), 136. doi:10.1016/s0898-1221(99)90435-2.

Tsuda, Y., Kaito, K., Aoki, K., & Kobayashi, K. (2006). Estimating Markovian transition probabilities for bridge deterioration forecasting. Structural Engineering/Earthquake Engineering, 23(2), 241 –256. doi:10.2208/jsceseee.23.241s.

Han, D., Kaito, K., Kobayashi, K., & Aoki, K. (2016). Performance evaluation of advanced pavement materials by Bayesian Markov Mixture Hazard model. KSCE Journal of Civil Engineering, 20(2), 729–737. doi:10.1007/s12205-015-0375-3.

Kobayashi, K., Kaito, K., & Lethanh, N. (2012). A statistical deterioration forecasting method using hidden Markov model for infrastructure management. Transportation Research Part B: Methodological, 46(4), 544–561. doi:10.1016/j.trb.2011.11.008.

Kobayashi, K., Do, M., & Han, D. (2010). Estimation of Markovian transition probabilities for pavement deterioration forecasting. KSCE Journal of Civil Engineering, 14(3), 343–351. doi:10.1007/s12205-010-0343-x.

Lancaster, T. (1990). The Econometric Analysis of Transition Data. Cambridge University Press, Cambridge, United Kingdom. doi:10.1017/ccol0521265967.

Kobayashi, K., Eguchi, M., Oi, A., Aoki, K., & Kaito, K. (2011). the Optimal Implementation Policy of Pavement Inspection With Deterioration Uncertainty. Journal of Japan Society of Civil Engineers, Ser. E1 (Pavement Engineering), 67(2), 75–90. doi:10.2208/jscejpe.67.75.

Obunguta, F., & Matsushima, K. (2022). Optimal pavement management strategy development with a stochastic model and its practical application to Ugandan national roads. International Journal of Pavement Engineering, 23(7), 2405–2419. doi:10.1080/10298436.2020.1857759.

Li, Y., & Madanat, S. (2002). A steady-state solution for the optimal pavement resurfacing problem. Transportation Research Part A: Policy and Practice, 36(6), 525–535. doi:10.1016/S0965-8564(01)00020-9.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. MIT press, Cambridge, United States.

Lv, J., Wang, X., Huang, M., Cheng, H., & Li, F. (2016). Solving 0-1 knapsack problem by greedy degree and expectation efficiency. Applied Soft Computing Journal, 41, 94–103. doi:10.1016/j.asoc.2015.11.045.

Rinnooy Kan, A. H. G., Stougie, L., & Vercellis, C. (1993). A class of generalized greedy algorithms for the multi-knapsack problem. Discrete Applied Mathematics, 42(2–3), 279–290. doi:10.1016/0166-218X(93)90051-O.

MPWT. (2009). Road Management System – Traffic Survey Manual. Ministry of Public Works and Transport, Vientiane, Lao PDR.

Gharieb, M., & Nishikawa, T. (2021). Development of Roughness Prediction Models for Laos National Road Network. CivilEng, 2(1), 158–173. doi:10.3390/civileng2010009.

JICA. (2018). The Project for Improvement of Road Management Capability in Lao PDR. Japan International Cooperation Agency (JICA), Tokyo, Japan.

MPWT. (2021). Road Asset Management Plan. Ministry of Public Works and Transport, Vientiane, Lao PDR.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97–109. doi:10.1093/biomet/57.1.97.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092. doi:10.1063/1.1699114.

MPWT. (2016). RMS Analysis Report for National Roads. Ministry of Public Works and Transport, Vientiane, Lao PDR.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-05-023

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Souvikhane Hanpasith

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message