Glow-Wire Analysis of Polypropylene Blends for Mechanical and Marine Engineering Applications
Downloads
Polymer materials are widely used due to their versatility; however, their vulnerability to fire is a significant concern, especially under electrical influences on engineered mechanical designs and marine structure applications. This study examines the fire resistance of a polypropylene (PP) blend using Glow-Wire Flammability Index (GWFI) and Glow-Wire Ignition Temperature (GWIT) tests. While previous research typically relies on flame-retardants to address flammability, this work proposes using a simple 1:1 weight ratio blend of two distinct PP types. This specific PP blend was selected to provide balanced material properties and improved processing consistency. The results from glow-wire tests were compared with previous findings to evaluate flammability performance. Our findings reveal that although the PP blend offers enhanced fire resistance compared to neat PP, it remains inferior to PP-containing flame-retardant additives. The outcomes suggest that this blended PP may be suitable for applications where mechanical properties, cost-effectiveness, and recyclability precede fire resistance, such as engineered automotive interiors, mechanical design of marine transportation, and low-risk electrical components in engineering infrastructure. This initial research contributes valuable insights into the fire behavior of PP blends. Moreover, it establishes a foundation for future investigations into polymer fire resistance, encouraging additional glow-wire testing on other polymer systems.
Downloads
[1] Gargano, A., Pingkarawat, K., Blacklock, M., Pickerd, V., & Mouritz, A. P. (2017). Comparative assessment of the explosive blast performance of carbon and glass fibre-polymer composites used in naval ship structures. Composite Structures, 171, 306–316. doi:10.1016/j.compstruct.2017.03.041.
[2] Oladele, I. O., Omotosho, T. F., & Adediran, A. A. (2020). Polymer-Based Composites: An Indispensable Material for Present and Future Applications. International Journal of Polymer Science, 2020, 1–12. doi:10.1155/2020/8834518.
[3] Tran, P., Nguyen, Q. T., & Lau, K. T. (2018). Fire performance of polymer-based composites for maritime infrastructure. Composites Part B: Engineering, 155, 31–48. doi:10.1016/j.compositesb.2018.06.037.
[4] Rubino, F., Nisticò, A., Tucci, F., & Carlone, P. (2020). Marine application of fiber reinforced composites: A review. Journal of Marine Science and Engineering, 8(1), 26. doi:10.3390/JMSE8010026.
[5] Baley, C., Davies, P., Troalen, W., Chamley, A., Dinham-Price, I., Marchandise, A., & Keryvin, V. (2024). Sustainable polymer composite marine structures: Developments and challenges. Progress in Materials Science, 145, 101307. doi:10.1016/j.pmatsci.2024.101307.
[6] Mouritz, A. P., Gellert, E., Burchill, P., & Challis, K. (2001). Review of advanced composite structures for naval ships and submarines. Composite Structures, 53(1), 21–42. doi:10.1016/S0263-8223(00)00175-6.
[7] Evegren, F., & Hertzberg, T. (2017). Fire safety regulations and performance of fibre-reinforced polymer composite ship structures. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 231(1), 46–56. doi:10.1177/1475090215620449.
[8] Prabowo, A. R., Bahatmaka, A., & Sohn, J. M. (2020). Crashworthiness characteristic of longitudinal deck structures against identified accidental action in marine environment: a study case of ship–bow collision. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(11), 584. doi:10.1007/s40430-020-02662-2.
[9] Windyandari, A., Kurdi, O., Sulardjaka, & Tauviqirrahman, M. (2022). Bow structure damage analysis for hybrid coir-glass fiber composite fishing boat hull subjected to front collision load. Curved and Layered Structures, 9(1), 236–257. doi:10.1515/cls-2022-0020.
[10] Prabowo, A. R., Muttaqie, T., Sohn, J. M., & Harsritanto, B. I. R. (2019). Investigation on structural component behaviours of double bottom arrangement under grounding accidents. Theoretical and Applied Mechanics Letters, 9(1), 50–59. doi:10.1016/j.taml.2019.01.010.
[11] Niklas, K., & Kozak, J. (2016). Experimental investigation of Steel-Concrete-Polymer composite barrier for the ship internal tank construction. Ocean Engineering, 111, 449–460. doi:10.1016/j.oceaneng.2015.11.030.
[12] Pach, J., Pyka, D., Jamroziak, K., & Mayer, P. (2017). The experimental and numerical analysis of the ballistic resistance of polymer composites. Composites Part B: Engineering, 113, 24–30. doi:10.1016/j.compositesb.2017.01.006.
[13] Zhou, Z., Sun, W., Zheng, N., & Tang, L. C. (2024). Experimental and numerical investigation of the energy absorption characteristics of carbon-basalt hybrid fiber reinforced polymer composites under ballistic impact. Composite Structures, 335, 118000. doi:10.1016/j.compstruct.2024.118000.
[14] Gargano, A., Donough, M., Das, R., & Mouritz, A. P. (2020). Damage to fibre-polymer laminates caused by surface contact explosive charges. Composites Part B: Engineering, 197, 108162. doi:10.1016/j.compositesb.2020.108162.
[15] Mouritz, A. P., & Mathys, Z. (1999). Post-fire mechanical properties of marine polymer composites. Composite Structures, 47(1–4), 643–653. doi:10.1016/S0263-8223(00)00043-X.
[16] Bryll, K., Kostecka, E., Scheibe, M., Dobrzyńska, R., Kostecki, T., Ślączka, W., & Korczyńska, I. (2023). Evaluation of Fire Resistance of Polymer Composites with Natural Reinforcement as Safe Construction Materials for Small Vessels. Applied Sciences (Switzerland), 13(10), 5832. doi:10.3390/app13105832.
[17] Satriatama, M. A., Pratama, A. A., Muttaqie, T., Prabowo, A. R., Kusharjanta, B., & Firdaus, H. (2024). Evaluation of double-bottom structure performance under fire accident using nonlinear finite element approach. Curved and Layered Structures, 11(1), 18. doi:10.1515/cls-2024-0018.
[18] ITS News. (2012). ITS Responds to KRI Klewang Fire. ITS News, Surabaya, Indonesia. Available online: https://www.its.ac.id/news/2012/10/01/its-tanggapi-kebakaran-kri-klewang/ (accessed on June 2025). (In Indonesian).
[19] Rachman, T. (2012). KRI Klewang Just Undergoes Trials, Catches Fire. Republika Online, Jakarta, Indonesia. Available online: https://news.republika.co.id/berita/mb2ei5/baru-jalani-ujicoba-kri-klewang-terbakar (accessed on June 2025). (In Indonesian).
[20] Prasetyo, B. (2012). The KRI Klewang 625 stealth ship was completely destroyed by fire. Tribunnews.com, Jakarta, Indonesia. Available online: https://www.tribunnews.com/regional/2012/09/28/kapal-siluman-kri-klewang-625-ludes-terbakar (accessed on June 2025). (In Indonesian).
[21] Wikipedia (2025). KRI Klewang: Wikipedia Bahasa Indonesia, Ensiklopedia Bebas. Available online: https://id.wikipedia.org/wiki/KRI_Klewang (accessed on June 2025).
[22] Tempo.Co. (2012). Profile of the Advanced Ship KRI Klewang that Burned in Banyuwangi. Tempo.Co, Jakarta, Indonesia. Available online: https://www.tempo.co/foto/arsip/profil-kapal-canggih-kri-klewang-yang-terbakar-di-banyuwangi-1120821 (accessed on June 2025). (In Indonesian).
[23] Babrauskas, V., & Simonson, M. (2007). Fire behaviour of plastic parts in electrical appliances - Standards versus required fire safety objectives. Fire and Materials, 31(1), 83–96. doi:10.1002/fam.927.
[24] Li, S., Tang, W., Qian, L., Li, J., Qu, L., Wang, J., Xi, W., & Qiu, Y. (2025). Micron-level aggregate initiated ultra-hydrophobicity with enhanced intumescent flame retardancy, smoke suppression, and toughness simultaneously in polypropylene. Chemical Engineering Journal, 504, 159040. doi:10.1016/j.cej.2024.159040.
[25] Türkan, O. T., & Çetin, E. (2023). Evaluating Combination of Solvent-Based Recycling and Mechanical Recycling of ABS Materials for Mitigating Plastic Pollution and Promoting Environmental Consciousness. Orclever Proceedings of Research and Development, 3(1), 672–693. doi:10.56038/oprd.v3i1.410.
[26] Guillaume, E., Yardin, C., Aumaitre, S., & Rumbau, V. (2011). Uncertainty determination of glow-wire test for ignition of materials. Journal of Fire Sciences, 29(6), 509–518. doi:10.1177/0734904111407024.
[27] Naik, A. D., Fontaine, G., Samyn, F., Delva, X., Bourgeois, Y., & Bourbigot, S. (2013). Melamine integrated metal phosphates as non-halogenated flame retardants: Synergism with aluminium phosphinate for flame retardancy in glass fiber reinforced polyamide 66. Polymer Degradation and Stability, 98(12), 2653–2662. doi:10.1016/j.polymdegradstab.2013.09.029.
[28] Duquesne, S., Samyn, F., Bourbigot, S., Amigouet, P., Jouffret, F., & Shen, K. K. (2008). Influence of talc on the fire retardant properties of highly filled intumescent polypropylene composites. Polymers for Advanced Technologies, 19(6), 620–627. doi:10.1002/pat.1127.
[29] Krämer, R., & Blomqvist, P. (2007). Fire behaviour of plastics for electrical applications. SP Report 2007:75, SP Technical Research Institute of Sweden, Borås, Sweden.
[30] Bernardes, F. R., Rezende, M. J. C., Rodrigues, V. de O., Nascimento, R. S. V., & Ribeiro, S. P. da S. (2019). Synthesis and application of H-ZSM-5 zeolites with different levels of acidity as synergistic agents in flame retardant polymeric materials. Polymers, 11(12), 2110. doi:10.3390/polym11122110.
[31] Ribeiro, S. P. da S., Martins, R. C., Barbosa, G. M., Rocha, M. A. de F., Landesmann, A., Nascimento, M. A. C., & Nascimento, R. S. V. (2020). Influence of the zeolite acidity on its synergistic action with a flame-retarding polymeric intumescent formulation. Journal of Materials Science, 55(2), 619–630. doi:10.1007/s10853-019-04047-w.
[32] Tang, W., Qian, L., Prolongo, S. G., & Wang, D. Y. (2023). Small core of piperazine/silane aggregation initiate efficient charring flame retardant effect in polypropylene composites. Polymer Degradation and Stability, 208, 110265. doi:10.1016/j.polymdegradstab.2023.110265.
[33] Tang, W., Qian, L., Prolongo, S. G., & Wang, D. Y. (2023). Dendritic copolymers from P-, N- and Si-based monomer and melamine phosphate generate thermal deformation toughening and a rapid charring flame retardant effect in polypropylene. Chemical Engineering Journal, 471, 144716. doi:10.1016/j.cej.2023.144716.
[34] IEC 60695-2-10:2000. (2000). Fire Hazard testing - Part 2-10: Glowing/hot-wire based test methods – Glow-wire apparatus and common test procedure. International Electrotechnical Commission, Geneva, Switzerland.
[35] IEC 60695-2-11:2014. (2014). Fire hazard testing - Part 2-11: Glowing/hot-wire based test methods – Glow-wire flammability test method for materials. International Electrotechnical Commission, Geneva, Switzerland.
[36] IEC 60695-2-12:2014. (2014). Fire hazard testing - Part 2-12: Glowing/hot-wire based test methods – Glow-wire flammability test method for materials. International Electrotechnical Commission, Geneva, Switzerland.
[37] IEC 60695-2-13:2014. (2014). Fire hazard testing - Part 2-13: Glowing/hot-wire based test methods – Glow-wire flammability test method for materials. International Electrotechnical Commission, Geneva, Switzerland.
[38] Acquasanta, F., Berti, C., Colonna, M., Fiorini, M., & Karanam, S. (2011). Study of Glow Wire Ignition Temperature (GWIT) and Comparative Tracking Index (CTI) performances of engineering thermoplastics and correlation with material properties. Polymer Degradation and Stability, 96(4), 566–573. doi:10.1016/j.polymdegradstab.2010.12.024.
[39] Kahraman, M., Klzllcan, N., & Oral, M. A. (2021). Influence of mica mineral on flame retardancy and mechanical properties of intumescent flame retardant polypropylene composites. Open Chemistry, 19(1), 904–915. doi:10.1515/chem-2021-0072.
[40] Chen, H., Wang, J., Ni, A., Ding, A., Sun, Z., & Han, X. (2018). Effect of novel intumescent flame retardant on mechanical and flame retardant properties of continuous glass fibre reinforced polypropylene composites. Composite Structures, 203, 894–902. doi:10.1016/j.compstruct.2018.07.071.
[41] Acquasanta, F., Berti, C., Colonna, M., Fiorini, M., & Karanam, S. (2011). Glow wire ignition temperature (GWIT) and comparative tracking index (CTI) of glass fibre filled engineering polymers, blends and flame retarded formulations. Polymer Degradation and Stability, 96(12), 2098–2103. doi:10.1016/j.polymdegradstab.2011.09.022.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.