Flexural Behavior of Hybrid Fiber Reinforced SCC Beams with Longitudinal and Bubble Voids
Abstract
Doi: 10.28991/CEJ-2025-011-04-08
Full Text: PDF
Keywords
References
Mansur, M. A. (1998). Effect of openings on the behaviour and strength of R/C beams in shear. Cement and Concrete Composites, 20(6), 477–486. doi:10.1016/S0958-9465(98)00030-4.
Mansur, M. A. (1999). Design of reinforced concrete beams with small openings under combined loading. ACI Structural Journal, 96(5), 675–682. doi:10.14359/720.
Nasvik, J. (2011). On the bubble: Placing concrete around plastic voids increases efficiency and reduces costs. Concrete Construction - World of Concrete, 56(12), 20–22.
Churakov, A. (2014). Biaxial hollow slab with innovative types of voids. Construction of Unique Buildings and Structures, (6), 70. (In Russian).
Mahdi, A. S., & Mohammed, S. D. (2021). Experimental and Numerical Analysis of Bubbles Distribution Influence in BubbleDeck Slab under Harmonic Load Effect. Engineering, Technology & Applied Science Research, 11(1), 6645–6649. doi:10.48084/etasr.3963.
Idris, N. A., Noh, H. M., Azwani Mohamad, N. L. I., & Bangau, R. (2020). Reinforced Concrete by Using the Rectangular Shape of Voided Beam. Journal of Mechanical Engineering, 9.
Abbass, A. A., Abid, S. R., Arna’ot, F. H., Al-Ameri, R. A., & Özakça, M. (2020). Flexural response of hollow high strength concrete beams considering different size reductions. Structures, 23, 69–86. doi:10.1016/j.istruc.2019.10.001.
Alnuaimi, A. S., Al-Jabri, K. S., & Hago, A. (2008). Comparison between solid and hollow reinforced concrete beams. Materials and Structures/Materiaux et Constructions, 41(2), 269–286. doi:10.1617/s11527-007-9237-x.
Dinesh Kanna, M., & Arun, M. (2021). Effects of Longitudinal and Transverse Direction Opening in Reinforced Concrete Beam: The State of Review. IOP Conference Series: Materials Science and Engineering, 1059(1), 12049. doi:10.1088/1757-899X/1059/1/012049.
Murugesan, A., & Narayanan, A. (2017). Influence of a Longitudinal Circular Hole on Flexural Strength of Reinforced Concrete Beams. Practice Periodical on Structural Design and Construction, 22(2), 04016021. doi:10.1061/(asce)sc.1943-5576.0000307.
Ismael, M. A., & Hameed, Y. M. (2022). Structural behavior of hollow-core reinforced self-compacting concrete beams. SN Applied Sciences, 4(5), 150. doi:10.1007/s42452-022-05036-6.
Al-Smadi, Y. M., Al-Huthaifi, N., & Alkhawaldeh, A. A. (2022). The effect of longitudinal hole shape and size on the flexural behavior of RC beams. Results in Engineering, 16, 100607. doi:10.1016/j.rineng.2022.100607.
Sivaneshan, P., & Harishankar, S. (2017). Experimental Study on Voided Reinforced Concrete Beams with Polythene Balls. IOP Conference Series: Earth and Environmental Science, 80(1), 12031. doi:10.1088/1755-1315/80/1/012031.
Ajeel, A. E., Qaseem, T. A., & Rasheed, S. R. (2018). Structural behavior of voided reinforced concrete beams under combined moments. Civil and Environmental Research, 10(1), 17-24.
Hekal, G. M., Fadel, A. K., Shaheen, Y. B., & Fayed, S. (2025). Flexure strength of multi-hollow core RC beams reinforced with advanced materials. Structures, 71, 108051. doi:10.1016/j.istruc.2024.108051.
Olivito, R. S., & Zuccarello, F. A. (2010). An experimental study on the tensile strength of steel fiber reinforced concrete. Composites Part B: Engineering, 41(3), 246–255. doi:10.1016/j.compositesb.2009.12.003.
Soutsos, M. N., Le, T. T., & Lampropoulos, A. P. (2012). Flexural performance of fibre reinforced concrete made with steel and synthetic fibres. Construction and Building Materials, 36, 704–710. doi:10.1016/j.conbuildmat.2012.06.042.
Chi, Y., Xu, L., & Zhang, Y. (2014). Experimental Study on Hybrid Fiber–Reinforced Concrete Subjected to Uniaxial Compression. Journal of Materials in Civil Engineering, 26(2), 211–218. doi:10.1061/(asce)mt.1943-5533.0000764.
Adnan Hadi, M., & Mohammed, S. D. (2021). Improving torsional - Flexural resistance of concrete beams reinforced by hooked and straight steel fibers. Materials Today: Proceedings, 42, 3072–3082. doi:10.1016/j.matpr.2020.12.1046.
Ismael, T. M., & Mohammed, S. D. (2021). Enhancing the mechanical properties of lightweight concrete using mono and hybrid fibers. IOP Conference Series: Materials Science and Engineering, 1105(1), 012084. doi:10.1088/1757-899x/1105/1/012084.
Grünewald, S., & Walraven, J. C. (2001). Parameter-study on the influence of steel fibers and coarse aggregate content on the fresh properties of self-compacting concrete. Cement and Concrete Research, 31(12), 1793–1798. doi:10.1016/S0008-8846(01)00555-5.
Ayeni, I. S., Yatim, J. M., Shukor Lim, N. H. A., & Alukoa, O. G. (2024). A Review of Hybridised Use of Fibres in Shear Behaviour of Fibre-Reinforced Concrete Beams. ASEAN Engineering Journal, 14(1), 145–156. doi:10.11113/aej.V14.20314.
Wu, F., Zhao, B., Cao, J., Shen, X., Wang, Z., Lei, H., & Cui, Z. (2024). Experimental and theoretical investigations on flexural performance of hybrid fiber reinforced ECC-NC composite beams. Case Studies in Construction Materials, 20, 3178. doi:10.1016/j.cscm.2024.e03178.
Yoo, D. Y., Soleimani-Dashtaki, S., Oh, T., Chun, B., Banthia, N., Lee, S. J., & Yoon, Y. S. (2024). Strain-hardening effect on the flexural behavior of ultra-high-performance fiber-reinforced concrete beams with steel rebars. Developments in the Built Environment, 17, 100343. doi:10.1016/j.dibe.2024.100343.
Sasikumar, P., & Candassamy, K. (2024). Strengthening of flexural behavior of reinforced concrete beams by using hybrid fibers: experimental and analytical study. Revista de La Construccion, 23(2), 354–373. doi:10.7764/RDLC.23.2.354.
Alshahrani, A., Kulasegaram, S., & Kundu, A. (2025). Utilisation of simulation-driven fibre orientation for effective modelling of flexural strength and toughness in self-compacting concrete. Construction and Building Materials, 459, 139767. doi:10.1016/j.conbuildmat.2024.139767.
Altun, F., Haktanir, T., & Ari, K. (2006). Experimental investigation of steel fiber reinforced concrete box beams under bending. Materials and Structures/Materiaux et Constructions, 39(4), 491–499. doi:10.1617/s11527-006-9095-y.
Jacob, B. M., & Bincy, S. (2018). Parametric Study of Longitudinal Hollow Steel Fibre Reinforced Concrete (SFRC) Beams. IOP Conference Series: Materials Science and Engineering, 396(1), 12011. doi:10.1088/1757-899X/396/1/012011.
EFCA. (2005). The European Guidelines for Self-Compacting Concrete: Specification, Production and Use. The European Guidelines for Self-Compacting Concrete (Issue May). European Project Group. European Federation of Concrete Admixtures Associations (EFCA), Berlin, Germany.
ASTM C33/C33M-18. (2003). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.
ASTM C39/C39M-18. (2020). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039M-18.
BS 1881-116. (1983) Testing Concrete. Method for Determination of Compressive Strength of Concrete Cubes. British standard Institute (BSI), London, United Kingdom.
ASTM C496/C496M-17. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, Pennsylvania, United States. doi:10.1520/C0496_C0496M-17.
ASTM C469/C469M-14. (2021). Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression, ASTM International, Pennsylvania, United States. doi:10.1520/C0469_C0469M-14.
ACI 318-19. (2019). American Concrete Institute, Building Code Requirements for Structural Concrete. American Concrete Institute (ACI), Farmington Hills, United States.
Park, R. (1988, August). Ductility evaluation from laboratory and analytical testing. Proceedings of the 9th world conference on earthquake engineering, 2-9 August, Tokyo-Kyoto Japan.
Banthia, N., & Nandakumar, N. (2003). Crack growth resistance of hybrid fiber reinforced cement composites. Cement and Concrete Composites, 25(1), 3–9. doi:10.1016/S0958-9465(01)00043-9.
Shao, Y. (2020). Improving ductility and design methods of reinforced high-performance fiber-reinforced cementitious composite (HPFRCC) flexural members. Ph.D. Thesis, Stanford University, Stanford, United States.
Dancygier, A. N., & Savir, Z. (2006). Flexural behavior of HSFRC with low reinforcement ratios. Engineering Structures, 28(11), 1503–1512. doi:10.1016/j.engstruct.2006.02.005.
Ning, X., Ding, Y., Zhang, F., & Zhang, Y. (2015). Experimental study and prediction model for flexural behavior of reinforced SCC beam containing steel fibers. Construction and Building Materials, 93, 644–653. doi:10.1016/j.conbuildmat.2015.06.024.
Chao, S. H., Naaman, A. E., & Parra-Montesinos, G. J. (2006). Bond behavior of strand embedded in fiber reinforced cementitious composites. PCI Journal, 51(6), 56–71. doi:10.15554/pcij.11012006.56.71.
Yoo, D. Y., & Yoon, Y. S. (2015). Structural performance of ultra-high-performance concrete beams with different steel fibers. Engineering Structures, 102, 409–423. doi:10.1016/j.engstruct.2015.08.029.
Taerwe, L. (2020). Structural ductility of concrete beams prestressed with FRP tendons. In Non-Metallic (FRP) Reinforcement for Concrete Structures. Non-Metallic (FRP) Reinforcement for Concrete Structures. doi:10.1201/9781482271621-56.
Li, Z., Zhu, H., Zhen, X., Wen, C., & Chen, G. (2021). Effects of steel fiber on the flexural behavior and ductility of concrete beams reinforced with BFRP rebars under repeated loading. Composite Structures, 270, 114072. doi:10.1016/j.compstruct.2021.114072.
Wang, H., & Belarbi, A. (2011). Ductility characteristics of fiber-reinforced-concrete beams reinforced with FRP rebars. Construction and Building Materials, 25(5), 2391–2401. doi:10.1016/j.conbuildmat.2010.11.040.
Natarajan, E. (2018). Ductility Response of Hybrid Fibre Reinforced Concrete Beams. Journal of Urban and Environmental Engineering, 174–179. doi:10.4090/juee.2017.v11n2.174-179.
Kim, T. K., & Park, J. S. (2021). Evaluation of the performance and ductility index of concrete structures using advanced composite material strengthening methods. Polymers, 13(23), 4239. doi:10.3390/polym13234239.
You, Z., Chen, X., & Dong, S. (2011). Ductility and strength of hybrid fiber reinforced self-consolidating concrete beam with low reinforcement ratios. Systems Engineering Procedia, 1, 28–34. doi:10.1016/j.sepro.2011.08.006.
Espion, B. (1994). Discussion of “Flexural Analysis of Reinforced Concrete Beams Containing Steel Fibers” by Byung Hwan Oh (October, 1992, Vol. 118, No. 10). Journal of Structural Engineering, 120(6), 1932–1934. doi:10.1061/(asce)0733-9445(1994)120:6(1932).
Ashour, S. A. (2000). Effect of compressive strength and tensile reinforcement ratio on flexural behavior of high-strength concrete beams. Engineering Structures, 22(5), 413–423. doi:10.1016/S0141-0296(98)00135-7.
Aslani, F., & Samali, B. (2014). Flexural toughness characteristics of self-compacting concrete incorporating steel and polypropylene fibres. Australian Journal of Structural Engineering, 15(3), 269–286. doi:10.7158/S13-011.2014.15.3.
ACI 544.4R-88 Report. (1999). Design Considerations for Steel Fiber Reinforced Concrete. ACI Structural Journal, 85(5), 544.4R-1-544.4R-17. doi:10.14359/3144.
DOI: 10.28991/CEJ-2025-011-04-08
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Esraa Mubder Edaan

This work is licensed under a Creative Commons Attribution 4.0 International License.