Bond Strength Evaluation of Waterproofing Membrane Assembly in Concrete Bridges
DOI:
https://doi.org/10.28991/CEJ-2025-011-02-010Keywords:
HMA, PCC, Waterproofing Membrane, Bridge Construction, Pull-off Test, Bond Strength.Abstract
On the concrete bridge decks overlaid by HMA, slippage cracks usually appear on the HMA layer because of the presence of waterproofing membranes below the HMA layer and a lack of bonding of the membrane with the PCC underlying layer. The objective of this work is to develop a laboratory-based method for the fabrication of test samples of an HMA layer, waterproofing membrane, and PCC layer system. In addition, a bond strength test procedure was adapted to evaluate the bonding of the three layers assembly at different test temperatures in the laboratory prior to the field application. According to the obtained evaluation results, it was found that the weakest bond in the HMA, waterproofing membrane, and PCC assembly is the bond between the HMA layer and the waterproofing membrane. The bond strength of the assembly is highly affected by increasing temperature, since it lost approximately 75% of its strength when the test temperature increased from 25°C to 50°C. Likewise, as the test temperature increased from 25°C to 60°C, the assembly lost approximately 75% of its strength. Therefore, the bond strength should be evaluated at the expected pavement temperature in the field, specifically at the membrane interface level.
Doi: 10.28991/CEJ-2025-011-02-010
Full Text: PDF
References
[2] He, Q., Zhang, H., Li, J., & Duan, H. (2021). Performance evaluation of polyurethane/epoxy resin modified asphalt as adhesive layer material for steel-UHPC composite bridge deck pavements. Construction and Building Materials, 291, 123364. doi:10.1016/j.conbuildmat.2021.123364.
[3] Nafaa, S., Ashour, K., Mohamed, R., Essam, H., Emad, D., Elhenawy, M., Ashqar, H. I., Hassan, A. A., & Alhadidi, T. I. (2024). Automated Pavement Cracks Detection and Classification Using Deep Learning. 2024 IEEE 3rd International Conference on Computing and Machine Intelligence (ICMI), 1–5. doi:10.1109/icmi60790.2024.10586098.
[4] Kruntcheva, M. R., Collop, A. C., & Thom, N. H. (2005). Effect of bond condition on flexible pavement performance. Journal of Transportation Engineering, 131(11), 880–888. doi:10.1061/(ASCE)0733-947X(2005)131:11(880).
[5] Al-Mansour, A., Zhu, Y., Lan, Y., Dang, N., Alwathaf, A. H., & Zeng, Q. (2024). Improving the adhesion between recycled plastic aggregates and the cement matrix. Reuse of Plastic Waste in Eco-efficient Concrete. Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/B978-0-443-13798-3.00008-5.
[6] West, R. C., Zhang, J., & Moore, J. (2005). Evaluation of bond strength between pavement layers (No. NCAT Report 05-08). National Center for Asphalt Technology, Auburn University, Auburn, United States.
[7] Li, S., Zhang, L., Guo, P., Zhang, P., Wang, C., Sun, W., & Han, S. (2021). Characteristic analysis of acoustic emission monitoring parameters for crack propagation in UHPC-NC composite beam under bending test. Construction and Building Materials, 278, 122401. doi:10.1016/j.conbuildmat.2021.122401.
[8] Somé, S. C., Feeser, A., Jaoua, M., & Le Corre, T. (2020). Mechanical characterization of asphalt mixes inter-layer bonding based on reptation theory. Construction and Building Materials, 242, 118063. doi:10.1016/j.conbuildmat.2020.118063.
[9] Yang, K., & Li, R. (2021). Characterization of bonding property in asphalt pavement interlayer: A review. Journal of Traffic and Transportation Engineering (English Edition), 8(3), 374–387. doi:10.1016/j.jtte.2020.10.005.
[10] Galaviz-González, J. R., Cueva, D. A., Covarrubias, P. L., & Palacios, M. Z. (2019). Bonding evaluation of asphalt emulsions used as tack coats through shear testing. Applied Sciences (Switzerland), 9(9), 1727. doi:10.3390/app9091727.
[11] Wang, L., Hou, Y., Zhang, L., & Liu, G. (2017). A combined static-and-dynamics mechanics analysis on the bridge deck pavement. Journal of Cleaner Production, 166, 209–220. doi:10.1016/j.jclepro.2017.08.034.
[12] Xu, Y., Fan, Z., Wang, Z., Shan, H., Lyu, X., Liu, Z., & Xu, S. (2024). Research on anti-shear performance of waterproof adhesive layer (WAL) in polyurethane-mixture steel-bridge pavement structure. Construction and Building Materials, 417, 135314. doi:10.1016/j.conbuildmat.2024.135314.
[13] Lei, X., Li, T., & Chen, H. (2025). Mechanical analysis and experimental study on the shear performance of waterproof adhesive layer toward concrete bridge deck pavement. Case Studies in Construction Materials, 22, e04250. doi:10.1016/j.cscm.2025.e04250.
[14] Rahman, A., Huang, H., Ai, C., Ding, H., Xin, C., & Lu, Y. (2019). Fatigue performance of interface bonding between asphalt pavement layers using four-point shear test set-up. International Journal of Fatigue, 121, 181–190. doi:10.1016/j.ijfatigue.2018.12.018.
[15] Zhang, Q., Xu, Y. H., & Wen, Z. G. (2017). Influence of water-borne epoxy resin content on performance of waterborne epoxy resin compound SBR modified emulsified asphalt for tack coat. Construction and Building Materials, 153, 774-782. doi:10.1016/j.conbuildmat.2017.07.148.
[16] Wei, F., Cao, J., Zhao, H., & Han, B. (2021). Laboratory Investigation on the Interface Bonding between Portland Cement Concrete Pavement and Asphalt Overlay. Mathematical Problems in Engineering, 2021, 1–11. doi:10.1155/2021/8831287.
[17] Ling, J., Wei, F., Zhao, H., Tian, Y., Han, B., & Chen, Z. (2019). Analysis of airfield composite pavement responses using full-scale accelerated pavement testing and finite element method. Construction and Building Materials, 212, 596–606. doi:10.1016/j.conbuildmat.2019.03.336.
[18] Mateos, A., Harvey, J., Paniagua, J., Paniagua, F., & Liu, A. F. (2017). Mechanical characterisation of concrete-asphalt interface in bonded concrete overlays of asphalt pavements. European Journal of Environmental and Civil Engineering, 21, s43–s53. doi:10.1080/19648189.2017.1311808.
[19] Leischner, S., Canon Falla, G., Gerowski, B., Rochlani, M., & Wellner, F. (2019). Mechanical Testing and Modeling of Interlayer Bonding in HMA Pavements. Transportation Research Record, 2673(11), 879–890. doi:10.1177/0361198119843254.
[20] Mohod, M. V., & Kadam, K. N. (2016). A comparative study on rigid and flexible pavement: A review. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 13(3), 84-88.
[21] Zhang, W. (2017). Effect of tack coat application on interlayer shear strength of asphalt pavement: A state-of-the-art review based on application in the United States. International Journal of Pavement Research and Technology, 10(5), 434–445. doi:10.1016/j.ijprt.2017.07.003.
[22] Ali, M. H., Khalil, A. H., & Wang, Y. (2023). Experimental Study of the Effect of Tack Coats on Interlayer Bond Strength of Pavement. Sustainability (Switzerland), 15(8), 6600. doi:10.3390/su15086600.
[23] Kamal, I., & Bas, Y. (2021). Materials and technologies in road pavements - An overview. Materials Today: Proceedings, 42, 2660–2667. doi:10.1016/j.matpr.2020.12.643.
[24] Haido, J. H., Tayeh, B. A., Majeed, S. S., & Karpuzcu, M. (2021). Effect of high temperature on the mechanical properties of basalt fibre self-compacting concrete as an overlay material. Construction and Building Materials, 268, 121725. doi:10.1016/j.conbuildmat.2020.121725.
[25] Gao, F., Gao, X., Chen, Q., Li, Y., Gao, Z., & Wang, C. (2022). Materials and Performance of Asphalt-Based Waterproof Bonding Layers for Cement Concrete Bridge Decks: A Systematic Review. Sustainability (Switzerland), 14(23), 15500. doi:10.3390/su142315500.
[26] H., Wang, C., Niu, L., Yang, G., & Liu, L. (2022). Composition optimisation and performance evaluation of waterborne epoxy resin emulsified asphalt tack coat binder for pavement. International Journal of Pavement Engineering, 23(11), 4034–4048. doi:10.1080/10298436.2021.1932878.
[27] Liu, L., Wang, C., & Liang, Q. (2022). Preparation of a heat insulation bonding layer for roads and its heat insulation effect. Journal of Cleaner Production, 365, 132828. doi:10.1016/j.jclepro.2022.132828.
[28] DN-STR-03009. (2000). Waterproofing and Surfacing of Concrete Bridge Decks. TII Publications, Dublin, Ireland.
[29] BBA-HAPAS. (2012). Guidelines Document for the Assessment and Certification of Waterproofing Systems for Use on Concrete Decks of Highway Bridges. British Board of Agrément (BBA), Watford, United Kingdom.
[30] Russell, H. G. (2012). Waterproofing membranes for concrete bridge decks. Transportation Research Board, Washington, United States.
[31] Khan, Z. A., Al-Abdul Wahab, H. I., Asi, I., & Ramadhan, R. (1998). Comparative study of asphalt concrete laboratory compaction methods to simulate field compaction. Construction and Building Materials, 12(6–7), 373–384. doi:10.1016/S0950-0618(98)00015-4.
[32] Zhao, X., Niu, D., Zhang, P., Niu, Y., Xia, H., & Liu, P. (2022). Macro-meso multiscale analysis of asphalt concrete in different laboratory compaction methods and field compaction. Construction and Building Materials, 361, 129607. doi:10.1016/j.conbuildmat.2022.129607.
[33] Shabani, R., Sengun, E., Ozturk, H. I., Alam, B., & Yaman, I. O. (2021). Superpave Gyratory Compactor as an Alternative Design Method for Roller Compacted Concrete in the Laboratory. Journal of Materials in Civil Engineering, 33(6), 4021101. doi:10.1061/(asce)mt.1943-5533.0003714.
[34] Wang, X., Ren, J., Hu, X., Gu, X., & Li, N. (2021). Determining Optimum Number of Gyrations for Porous Asphalt Mixtures Using Superpave Gyratory Compactor. KSCE Journal of Civil Engineering, 25(6), 2010–2019. doi:10.1007/s12205-021-1005-x.
[35] Xu, J., Li, N., & Xu, T. (2022). Temperature Changes of Interlaminar Bonding Layer in Different Seasons and Effects on Mechanical Properties of Asphalt Pavement. International Journal of Pavement Research and Technology, 15(3), 589–605. doi:10.1007/s42947-021-00039-9.
[36] Zhang, H., Gao, P., Zhang, Z., & Pan, Y. (2020). Experimental study of the performance of a stress-absorbing waterproof layer for use in asphalt pavements on bridge decks. Construction and Building Materials, 254, 119290. doi:10.1016/j.conbuildmat.2020.119290.
[37] Correia, N. S., Souza, T. R., Silva, M. P. S., & Kumar, V. V. (2023). Investigations on interlayer shear strength characteristics of geosynthetic-reinforced asphalt overlay sections at Salvador International Airport. Road Materials and Pavement Design, 24(6), 1542–1558. doi:10.1080/14680629.2022.2092021.
[38] Lung, C. K., Mohd Hasan, M. R., Hamzah, M. O., Sani, A., Poovaneshvaran, S., & Ramadhansyah, P. J. (2020). Effect of temperatures and loading rates on direct shear strength of asphaltic concrete using layer-parallel direct shear test. IOP Conference Series: Materials Science and Engineering, 712(1), 12047. doi:10.1088/1757-899X/712/1/012047.
[39] Vrtis, M., Rodezno, C., West, R., Podolsky, J., Calvert, J., & Van Deusen, D. (2023). NCAT Report 23-03, National Center for Asphalt Technology, Auburn University, Auburn, United States.
[40] Recasens, R., Martínez, A., & Jiménez, F. (2006). Evaluation of Effect of Heat-Adhesive Emulsions for Tack Coats with Shear Test: From the Road Research Laboratory of Barcelona. Transportation Research Record: Journal of the Transportation Research Board, 1970, 64–70. doi:10.3141/1970-08.
[41] Montgomery, D. C. (2017). Design and analysis of experiments. John Wiley & Sons, Hoboken, United States.
Downloads
Published
Issue
Section
License
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
