Consolidation Behavior of Soft Soil Treated with PVDs and Vacuum-Surcharge Preloading
Downloads
Prefabricated vertical drain (PVD) combined with vacuum-surcharge preloading is a widely used ground improvement technique to accelerate the dissipation of excess pore water pressure and reduce the soil compressibility. However, difficulties in the numerical simulations of water dissipation and equivalent permeability of soil with PVDs in three-dimensional (3D) and two-dimensional (2D) settings cause substantial deviation of numerical results from observational data. Moreover, the optimum length of PVDs has not been well documented. Accordingly, this work analyzes a project in Dong Nai, Vietnam, where a 37-meter-thick soft soil was treated with PVDs and vacuum-surcharge preloading. In this work, the field observations and finite element method with consolidation theory were used to analyze the ground settlements, lateral displacements, and excess pore water pressure. The observed and simulated data shows that (i) the rate of settlements in the first 60 days of increasing preloading pressure is about 2.1 times faster than that in the next 110 days of constant preloading pressure, (ii) at 170 days, the ground-surface lateral displacement at the toe of the embankment is around 50 mm and reaches its maximum value of 150 mm at 1.55 m depth, and (iii) the dissipation of pore water pressure is closely correlated with the settlement rate. Moreover, back analysis indicates that a permeability conversion ratio from 1.872 to 4.538 should be applied to achieve the same degree of consolidation between 3D and 2D models. Lastly, the optimum length of PVDs in this project is 28 m, around 76% of the fully penetrated length into the soft layer.
Downloads
[1] Knappett, J., & Craig, R. F. (2019). Craig’s Soil Mechanics. In Craig’s Soil Mechanics. doi:10.1201/9781351052740.
[2] Shukla, S. K., Sivakugan, N., & Das, B. M. (2009). Methods for determination of the coefficient of consolidation and field observations of time rate of settlement-An overview. International Journal of Geotechnical Engineering, 3(1), 89–108. doi:10.3328/IJGE.2009.03.01.89-108.
[3] Abeele, W., Nyhan, J. W., Hakonson, T. E., Drennon, B. J., Lopez, E. A., Herrera, W. J., ... & Trujillo, G. (1986). Consolidation and shear failure leading to subsidence and settlement. Final report (No. LA-10576-MS), Los Alamos National Lab (LANL), Los Alamos, United States. doi:10.2172/6082905.
[4] Vinoth, M. (2025). Ground Improvement by Prefabricated Vertical Drains and Surcharge for a Metro Depot Constructed on Marine Deposit. Transportation Infrastructure Geotechnology, 12(3), 1–38. doi:10.1007/s40515-025-00574-z.
[5] Bergado, D. T., Jamsawang, P., Voottipruex, P., Jongpradist, P., Rementilla, J., & Dicker, S. (2024). First and second vacuum-PVD improvement of soft Bangkok clay for the third runway of Suvarnabhumi International Airport Thailand. Innovative Infrastructure Solutions, 9(9), 348. doi:10.1007/s41062-024-01669-1.
[6] Liu, K., He, H. T., Tan, D. Y., Feng, W. Q., Zhu, H. H., & Yin, J. H. (2024). A Case Study of Performance Comparison Between Vacuum Preloading and Fill Surcharge for Soft Ground Improvement. International Journal of Geosynthetics and Ground Engineering, 10(1), 11. doi:10.1007/s40891-024-00521-x.
[7] Feng, S., Bai, W., Lei, H., Song, X., Liu, W., & Cheng, X. (2024). Vacuum preloading combined with surcharge preloading method for consolidation of clay-slurry ground: A case study. Marine Georesources & Geotechnology, 42(4), 348–361. doi:10.1080/1064119X.2023.2185843.
[8] Wu, J., Xuan, Y., Deng, Y., Li, X., Zha, F., & Zhou, A. (2021). Combined vacuum and surcharge preloading method to improve lianyungang soft marine clay for embankment widening project: A case. Geotextiles and Geomembranes, 49(2), 452–465. doi:10.1016/j.geotexmem.2020.10.013.
[9] Chai, J. C., Carter, J. P., & Hayashi, S. (2006). Vacuum consolidation and its combination with embankment loading. Canadian Geotechnical Journal, 43(10), 985–996. doi:10.1139/T06-056.
[10] Barron, R. A. (1948). Consolidation of Fine-Grained Soils by Drain Wells by Drain Wells. Transactions of the American Society of Civil Engineers, 113(1), 718–742. doi:10.1061/taceat.0006098.
[11] Hansbo, S. (1981) Consolidation of Fine-Grained Soils by Prefabricated Drains. 10th International Conference on Soil Mechanics and Foundation Engineering, 15-19 June, 1981, Stockholm, Sweden.
[12] Shen, Z., Chian, S. C., Tan, S. A., & Leung, C. F. (2024). Modelling smear effect of vertical drains using a diameter reduction method. Journal of Rock Mechanics and Geotechnical Engineering, 16(1), 279–290. doi:10.1016/j.jrmge.2023.06.021.
[13] Hird, C. C., Pyrah, I. C., Russell, D., & Cinicioglu, F. (1995). Modelling the effect of vertical drains in two-dimensional finite element analyses of embankments on soft ground. Canadian Geotechnical Journal, 32(5), 795–807. doi:10.1139/t95-077.
[14] Indraratna, B., Sathananthan, I., Rujikiatkamjorn, C., & Balasubramaniam, A. S. (2005). Analytical and Numerical Modeling of Soft Soil Stabilized by Prefabricated Vertical Drains Incorporating Vacuum Preloading. International Journal of Geomechanics, 5(2), 114–124. doi:10.1061/(asce)1532-3641(2005)5:2(114).
[15] Parsa-Pajouh, A., Fatahi, B., Vincent, P., & Khabbaz, H. (2014). Trial Embankment Analysis to Predict Smear Zone Characteristics Induced by Prefabricated Vertical Drain Installation. Geotechnical and Geological Engineering, 32(5), 1187–1210. doi:10.1007/s10706-014-9789-9.
[16] Cheung, Y. K., Lee, P. K. K., & Xie, K. H. (1991). Some remarks on two and three dimensional consolidation analysis of sand-drained ground. Computers and Geotechnics, 12(1), 73–87. doi:10.1016/0266-352X(91)90012-5.
[17] Parsa-Pajouh, A., Fatahi, B., Vincent, P., & Khabbaz, H. (2014). Analyzing consolidation data to predict smear zone characteristics induced by vertical drain installation for soft soil improvement. Geomechanics and Engineering, 7(1), 105–131. doi:10.12989/gae.2014.7.1.105.
[18] Kan, M. E., Indraratna, B., & Rujikiatkamjorn, C. (2021). On numerical simulation of vertical drains using linear 1-dimensional drain elements. Computers and Geotechnics, 132, 103960. doi:10.1016/j.compgeo.2020.103960.
[19] Ong, C. Y., Chai, J. C., & Hino, T. (2012). Degree of consolidation of clayey deposit with partially penetrating vertical drains. Geotextiles and Geomembranes, 34, 19–27. doi:10.1016/j.geotexmem.2012.02.008.
[20] Chai, J. C., Miura, N., Kirekawa, T., & Hino, T. (2009). Optimum PVD installation depth for two-way drainage deposit. Geomechanics & Engineering, 1(3), 179–191. doi:10.12989/gae.2009.1.3.179.
[21] Vu, V. T. (2015). Optimal Layout of Prefabricated Vertical Drains. International Journal of Geomechanics, 15(3), 6014020. doi:10.1061/(asce)gm.1943-5622.0000434.
[22] Chen, J., Shen, S. L., Yin, Z. Y., Xu, Y. S., & Horpibulsuk, S. (2016). Evaluation of Effective Depth of PVD Improvement in Soft Clay Deposit: A Field Case Study. Marine Georesources & Geotechnology, 34(5), 420–430. doi:10.1080/1064119X.2015.1016638.
[23] PORTCOAST. (2021). Phuoc An Port and Logistics service area project (Phase 1), Construction Design Documents, Dong Nai Province, Vietnamese.
[24] PORTCOAST. (2021). Phuoc An Port and Logistics service area project (Phase 1), Soil Investigation Report, Dong Nai Province, Vietnamese.
[25] PLAXIS. (2023). PLAXIS 3D Manuals CONNECT Edition. Bentley Systems Inc., Pennsylvania, United States.
[26] Biot, M. A. (1956). General Solutions of the Equations of Elasticity and Consolidation for a Porous Material. Journal of Applied Mechanics, 23(1), 91–96. doi:10.1115/1.4011213.
[27] Architectural Institute of Japan (AIJ). (2001). Recommendations for design of building foundations. Architectural Institute of Japan (AIJ), Tokyo, Japan. (In Japanese).
[28] Mesri, G., Stark, T. D., Ajlouni, M. A., & Chen, C. S. (1997). Secondary Compression of Peat with or without Surcharging. Journal of Geotechnical and Geoenvironmental Engineering, 123(5), 411–421. doi:10.1061/(asce)1090-0241(1997)123:5(411).
[29] Holtz, R. D., Jamiolkowski, M. B., Lancellotta, R., and Pedroni, R. (1991). Prefabricated vertical drains: design and performance. Butterworth-Heinemann, Oxford, United Kingdom.
[30] Bo, M.W., Chu, J., Low, B.K. and Choa, V. (2003) Soil Improvement: Prefabricated Vertical Drain Technique. Thomson Learning, Singapore.
[31] Hansbo, S. (1997). Aspects of vertical drain design: Darcian or non-Darcian flow. Geotechnique, 47(5), 983–992. doi:10.1680/geot.1997.47.5.983.
[32] Bergado, D. T., Jamsawang, P., Jongpradist, P., Likitlersuang, S., Pantaeng, C., Kovittayanun, N., & Baez, F. (2022). Case study and numerical simulation of PVD improved soft Bangkok clay with surcharge and vacuum preloading using a modified air-water separation system. Geotextiles and Geomembranes, 50(1), 137–153. doi:10.1016/j.geotexmem.2021.09.009.
[33] Long, P. V., Bergado, D. T., Nguyen, L. V., & Balasubramaniam, A. S. (2013). Design and performance of soft ground improvement using PVD with and without vacuum consolidation. Geotechnical Engineering, 44(4), 36–51. doi:10.14456/seagj.2013.5.
[34] Chai, J., Ong, C. Y., Carter, J. P., & Bergado, D. T. (2013). Lateral displacement under combined vacuum pressure and embankment loading. Geotechnique, 63(10), 842–856. doi:10.1680/geot.12.P.060.
[35] Rixner, J. J., Kraemer, S. R., & Smith, A. D. (1986). Prefabricated Vertical Drains, Vol. I, II and III: Summary of Research Report-Final Report. Federal Highway Admin., Report No. FHWA-RD-86/169, Washington, United Kingdom.
[36] Hansbo, S. (1979). Consolidation of Clay By Band-Shaped Prefabricated Drains. Ground Engineering, 12(5), 16–18, 21. doi:10.1016/0148-9062(80)90141-2.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.