Development of Oscillating Water Column Breakwater Model

. Sugianto, Rita Tahir Lopa, Riswal Karamma, Chairul Paotonan

Abstract


Integrating coastal protection functions and wave energy conversion makes the OWC breakwater an environmentally friendly and material-efficient innovation compared to conventional breakwaters. This research aims to determine the wave runup height on the Sloped side of the OWC breakwater model and its internal pressure. Utilizing theoretical approaches, a 1:20 scale laboratory model, dimensional analysis, and parameter relationships, the study investigates the effects of wave interaction, model geometry, and water depth. The analysis reveals a positive correlation between the combined parameter value (𝜓) and relative pressure (P/ρghs), highlighting the consistent influence of these parameters on pressure behavior. Results show that a lower slope angle increases pressure, while variations in inlet opening sizes (hs) significantly affect wave runup (Ru/Hi) and run-down (Rd/Hi). Larger inlet openings generally reduce the wave runup effect, though the magnitude of this impact depends on the slope angle. The optimal configuration for the OWC breakwater model is identified as an inlet opening size between 5 cm with a slope angle of 45° to 60°, providing relatively higher pressure while maintaining stability. This combination improves the system's efficiency in absorbing and using wave energy.

 

Doi: 10.28991/CEJ-2025-011-04-02

Full Text: PDF


Keywords


Reflection; Runup; Pressure; Breakwater; Oscillating Water Column.

References


Heath, T. V. (2012). A review of oscillating water columns. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1959), 235–245. doi:10.1098/rsta.2011.0164.

Suh, K. D., Park, J. K., & Park, W. S. (2006). Wave reflection from partially perforated-wall caisson breakwater. Ocean Engineering, 33(2), 264–280. doi:10.1016/j.oceaneng.2004.11.015.

Rageh, O. S., & Koraim, A. S. (2010). Hydraulic performance of vertical walls with horizontal slots used as breakwater. Coastal Engineering, 57(8), 745–756. doi:10.1016/j.coastaleng.2010.03.005.

Yuwono, N., & Sriyana, I. (2022). Wave Transmission and Energy Dissipation in a Box Culvert-Type Slotted Breakwater. Advances in Technology Innovation, 7(4), 270.

Koraim, A. S. (2014). Hydraulic characteristics of pile-supported L-shaped bars used as a screen breakwater. Ocean Engineering, 83, 36–51. doi:10.1016/j.oceaneng.2014.03.016.

Lopa, R. T., & Rohani, I. (2018). Breakwater Analysis in Bamballoka, Pasangkayu Regency. Bandar: Journal of Civil Engineering, 1(1), 25-29. (In Indonesian).

Bungin, E. R., Pallu, S., Thaha, M. A., & Lopa, R. T. (2020). The effect of asymmetric submerged structure series on wave deformation. 9 February, 2017, Pekanbaru, Indonesia. (In Indonesian).

Iturrioz, A., Guanche, R., Lara, J. L., Vidal, C., & Losada, I. J. (2015). Validation of OpenFOAM® for Oscillating Water Column three-dimensional modeling. Ocean Engineering, 107, 222–236. doi:10.1016/j.oceaneng.2015.07.051.

Daniel Raj, D., Sundar, V., & Sannasiraj, S. A. (2019). Enhancement of hydrodynamic performance of an Oscillating Water Column with harbour walls. Renewable Energy, 132, 142–156. doi:10.1016/j.renene.2018.07.089.

Elhanafi, A., Fleming, A., Macfarlane, G., & Leong, Z. (2017). Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column–wave energy converter. Renewable Energy, 105, 209–231. doi:10.1016/j.renene.2016.12.039.

Ning, D. zhi, Guo, B. ming, Wang, R. quan, Vyzikas, T., & Greaves, D. (2020). Geometrical investigation of a U-shaped oscillating water column wave energy device. Applied Ocean Research, 97(September), 102105. doi:10.1016/j.apor.2020.102105.

Vyzikas, T., Deshoulières, S., Barton, M., Giroux, O., Greaves, D., & Simmonds, D. (2017). Experimental investigation of different geometries of fixed oscillating water column devices. Renewable Energy, 104, 248–258. doi:10.1016/j.renene.2016.11.061.

Deng, Z., Wang, C., Wang, P., Higuera, P., & Wang, R. (2019). Hydrodynamic performance of an offshore-stationary OWC device with a horizontal bottom plate: Experimental and numerical study. Energy, 187, 115941. doi:10.1016/j.energy.2019.115941.

Mahnamfar, F., & Altunkaynak, A. (2017). Comparison of numerical and experimental analyses for optimizing the geometry of OWC systems. Ocean Engineering, 130, 10–24. doi:10.1016/j.oceaneng.2016.11.054.

Bouali, B., & Larbi, S. (2013). Contribution to the geometry optimization of an oscillating water column wave energy converter. Energy Procedia, 36, 565–573. doi:10.1016/j.egypro.2013.07.065.

Oh, J. S., & Han, S. H. (2012). Inlet geometry effect of wave energy conversion system. Journal of Mechanical Science and Technology, 26(9), 2793–2798. doi:10.1007/s12206-012-0726-7.

Triatmodjo, B. (1999). Coastal Engineering. Beta Offset, Yogyakarta, Indonesia. (In Indonesian).

McCormick, M. E. (2013). Ocean wave energy conversion. Courier Corporation, Massachusetts, United States.

Hughes, S. A. (1993). Physical models and laboratory techniques in coastal engineering. World Scientific Publishing Company, Singapore.

Huddiankuwera, A., Rachman, T., Thaha, M. A., & Dewa, S. (2022). Wave Deformation on Sloping Hollow Breakwater. International Journal of Engineering Trends and Technology, 70(10), 188–194. doi:10.14445/22315381/IJETT-V70I10P218.

Koraim, A. S., Heikal, E. M., & Abo Zaid, A. A. (2014). Hydrodynamic characteristics of porous seawall protected by submerged breakwater. Applied Ocean Research, 46, 1–14. doi:10.1016/j.apor.2014.01.003.

Dean, R. G., & Dalrymple, R. A. (1984). Water wave mechanics for engineers and scientists. World Scientific Publishing Company, Singapore. doi:10.1029/eo066i024p00490-06.

Soewarno, S. (1995). Hydrology: Application of Statistical Methods for Data Analysis. Nova, Bandung, Indonesia. (In Indonesian).

Goel, A. (2011). ANN-Based Approach for Predicting Rating Curve of an Indian River. ISRN Civil Engineering, 2011, 1–4. doi:10.5402/2011/291370.

Falcão, A. F. O., Sarmento, A. J. N. A., Gato, L. M. C., & Brito-Melo, A. (2020). The Pico OWC wave power plant: Its lifetime from conception to closure 1986–2018. Applied Ocean Research, 98, 102–104. doi:10.1016/j.apor.2020.102104.

Gaspar, L. A., Teixeira, P. R. F., & Didier, E. (2020). Numerical analysis of the performance of two onshore oscillating water column wave energy converters at different chamber wall slopes. Ocean Engineering, 201, 107–119. doi:10.1016/j.oceaneng.2020.107119.

He, F., Zhang, H., Zhao, J., Zheng, S., & Iglesias, G. (2019). Hydrodynamic performance of a pile-supported OWC breakwater: An analytical study. Applied Ocean Research, 88, 326–340. doi:10.1016/j.apor.2019.03.022.

Lee, H. H., Chiu, Y.-F., Lin, C.-Y., Chen, C.-H., & Huang, M.-H. (2016). Parametric Study on a Caisson Based OWC Wave Energy Converting System. World Journal of Engineering and Technology, 04(03), 213–219. doi:10.4236/wjet.2016.43d026.

Liu, Z., Xu, C., Shi, H., & Qu, N. (2020). Wave-flume tests of a model-scaled OWC chamber-turbine system under irregular wave conditions. Applied Ocean Research, 99, 102–141. doi:10.1016/j.apor.2020.102141.

Zheng, S., Zhang, Y., & Iglesias, G. (2019). Coast/breakwater-integrated OWC: A theoretical model. Marine Structures, 66, 121–135. doi:10.1016/j.marstruc.2019.04.001.

Thaha, A., Maricar, F., Aboe, A. F., & Dwipuspita, A. I. (2015). The breakwater, from wave breaker to wave catcher. Procedia Engineering, 116(1), 691–698. doi:10.1016/j.proeng.2015.08.352.

Didier, E., & Teixeira, P. R. F. (2024). Numerical analysis of 3D hydrodynamics and performance of an array of oscillating water column wave energy converters integrated into a vertical breakwater. Renewable Energy, 225, 120–297. doi:10.1016/j.renene.2024.120297.

Venkateswarlu, V., Panduranga, K., Vijay, K. G., & Behera, H. (2024). Evaluation of oscillating water column efficiency in the presence of multiple bottom-standing breakwaters under oblique waves. Physics of Fluids, 36(11), 117–175. doi:10.1063/5.0237370.

Gayathri, R., Chang, J. Y., Tsai, C. C., & Hsu, T. W. (2024). Wave Energy Conversion through Oscillating Water Columns: A Review. Journal of Marine Science and Engineering, 12(2), 1–22. doi:10.3390/jmse12020342.

Wang, C., Zhang, Y., Xu, H., & Chen, W. (2024). Wave power extraction from an integrated system composed of a three-unit oscillating water column array and an inclined breakwater. Renewable and Sustainable Energy Reviews, 202, 114–645. doi:10.1016/j.rser.2024.114645.

Tsai, C. P., Fan, C. Y., Chen, Y. C., & Ko, C. H. (2024). Experimental Study of wave pressure on breakwater-integrated OWC Wave Energy Converter. In ISOPE International Ocean and Polar Engineering Conference (ISOPE), 16-21 June, 2024, Rhodes, Greece.

Zhang, Y., Zhu, W., Xu, Q., Kong, D., & Dong, X. (2024). Hydrodynamic performance of a pile-supported oscillating water column breakwater in front of a partially reflecting seawall. Physics of Fluids, 36(7), 077–139. doi:10.1063/5.0219892.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-04-02

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Sugianto Sugianto, Rita Tahir Lopa, Riswal Karamma, Chairul Paotonan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message