Effect of Graphene Oxide on the Performance of Fly Ash Concrete Exposed to Ambient Temperature
Downloads
The rising global temperatures due to climate change are accelerating concrete deterioration by shortening its service life, which subsequently increases maintenance costs. Therefore, the objective of this investigation is to analyze the graphene oxide (GO) effect on the mechanical characteristics and microstructural properties of fly ash (FA) concrete exposed to ambient temperatures. Concrete specimens were created by employing GO from 0.01% to 0.05% by weight of cement and cured using two distinct methods. These include standard curing in immersed water and for 7 days followed by ambient exposure. The mechanical test showed that GO significantly enhanced compressive strength, with 0.04% GO observed to have increased strength by approximately 16% at 28 days. However, exposure to ambient conditions led to decreased compressive and flexural strength and increased mass loss. The microstructural analysis also showed that ambient-exposed concrete exhibited higher porosity and incomplete hydration. The results showed that the addition of GO enhanced durability by refining the microstructure, reducing porosity, and enhancing thermal stability. Thermal analysis also confirmed that GO minimized moisture loss and improved thermal resistance. Furthermore, Fourier Transform Infrared Spectroscopy (FTIR) validated the improvement in bonding for the GO-FA concrete. These results showed that GO could mitigate the adverse effects of environmental exposure, leading to its identification as an advantageous additive to increase the long-term durability and concrete performance in different temperature conditions.
Downloads
[1] Sen, S., Li, H., & Khazanovich, L. (2022). Effect of climate change and urban heat islands on the deterioration of concrete roads. Results in Engineering, 16, 100736. doi:10.1016/j.rineng.2022.100736.
[2] Ng, W. S. (2021). Impact of Climate Change on Infrastructure. Industry, Innovation and Infrastructure. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham, Switzerland. doi:10.1007/978-3-319-95873-6_10.
[3] Deschner, F., Lothenbach, B., Winnefeld, F., & Neubauer, J. (2013). Effect of temperature on the hydration of Portland cement blended with siliceous fly ash. Cement and concrete research, 52, 169-181. doi:10.1016/j.cemconres.2013.07.006.
[4] Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F., & Immerzeel, W. W. (2017). Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature, 549(7671), 257–260. doi:10.1038/nature23878.
[5] Qiao, Y., Wang, Y., Zhang, S., Stoner, A. M. K., & Santos, J. (2024). Effects of 1.5 °C global warming on pavement climatic factors and performance. Transportation Research Part D: Transport and Environment, 136, 104393. doi:10.1016/j.trd.2024.104393.
[6] Maizuar, Fithra, H., Khairullah, Usrina, N., Bahri, S., & Senin, S. F. (2024). Mechanical Properties of High-Volume Fly Ash Mortar Modified by Hybrid Carbon Nano Tube and Graphene Oxide. Electronic Journal of Structural Engineering, 24(4), 23–27. doi:10.56748/ejse.24659.
[7] Maizuar, M., Maulani, E., Usrina, N., Ersa, N. S., Sofyan, S., Mahmudy, A. S., & Prasetia, G. (2024). Effect of Carbon Nanotubes and Graphene Oxide on the Hydration Characteristics and Compressive Strength of Cement Mortar with High Volume Fly Ash. International Journal of Engineering, Science and Information Technology, 5(1), 93–100. doi:10.52088/ijesty.v5i1.648.
[8] Herath, C., Gunasekara, C., Law, D. W., & Setunge, S. (2020). Performance of high-volume fly ash concrete incorporating additives: A systematic literature review. Construction and Building Materials, 258, 120606. doi:10.1016/j.conbuildmat.2020.120606.
[9] Zhou, Z., Sofi, M., Liu, J., Li, S., Zhong, A., & Mendis, P. (2021). Nano-CSH modified high volume fly ash concrete: Early-age properties and environmental impact analysis. Journal of Cleaner Production, 286, 124924. doi:10.1016/j.jclepro.2020.124924.
[10] Soutsos, M., Hatzitheodorou, A., Kwasny, J., & Kanavaris, F. (2016). Effect of in situ temperature on the early age strength development of concretes with supplementary cementitious materials. Construction and Building Materials, 103(2016), 105–116. doi:10.1016/j.conbuildmat.2015.11.034.
[11] Senin, S. F., Maizuar, Khairullah, Usrina, N., Desmi, A., Bahri, S., & Phoenna, N. (2024). Effect of Combined Carbon Nano Tubes and Graphene Oxide on the High-Volume Fly Ash Mortar Properties. Journal of Physics: Conference Series, 2916(1), 12006. doi:10.1088/1742-6596/2916/1/012006.
[12] Mahmud, S. H., Hasan, M. M., & Das, L. C. (2024). Experimental Study on Partial Replacement of Cement with Fly Ash in Concrete Mix Design. The Asian Review of Civil Engineering, 13(1), 1-5. doi:10.70112/tarce-2024.13.1.4206.
[13] Ondova, M., Stevulova, N., & Meciarova, L. (2013). The potential of higher share of fly ash as cement replacement in the concrete pavement. Procedia Engineering, 65, 45–50. doi:10.1016/j.proeng.2013.09.009.
[14] homas, M.D.A. (2007) Optimizing the Use of Fly Ash in Concrete. Portland Cement Association, Skokie, United States.
[15] Wang, Q., Li, S., Pan, S., Cui, X., Corr, D. J., & Shah, S. P. (2019). Effect of graphene oxide on the hydration and microstructure of fly ash-cement system. Construction and Building Materials, 198, 106–119. doi:10.1016/j.conbuildmat.2018.11.199.
[16] Du, M., Jing, H., Gao, Y., Su, H., & Fang, H. (2020). Carbon nanomaterials enhanced cement-based composites: Advances and challenges. Nanotechnology Reviews, 9(1), 115–135. doi:10.1515/ntrev-2020-0011.
[17] Lu, S., Gong, C., Yu, J., Hu, J., Wang, S., & Gao, Y. (2024). Reinforcing mechanisms review of the graphene oxide on cement composites. Nanotechnology Reviews, 13(1), 20240120. doi:10.1515/ntrev-2024-0120.
[18] Suo, Y., Guo, R., Xia, H., Yang, Y., Zhou, B., & Zhao, Z. (2022). A review of graphene oxide/cement composites: Performance, functionality, mechanisms, and prospects. Journal of Building Engineering, 53, 104502. doi:10.1016/j.jobe.2022.104502.
[19] Sai T, Y., & P, J. (2025). Efficacy of graphene oxide-based nanomaterials in customized cement mixtures, a review of recent research trends. Hybrid Advances, 10, 100428. doi:10.1016/j.hybadv.2025.100428.
[20] Devi, S. C., & Khan, R. A. (2020). Effect of graphene oxide on mechanical and durability performance of concrete. Journal of Building Engineering, 27, 101007. doi:10.1016/j.jobe.2019.101007.
[21] Reddy, P. V. R. K., & Ravi Prasad, D. (2024). The effect of graphene oxide-fly ash hybridisation on the hydration, microstructure and mechanical characteristics of cement concrete. Fullerenes Nanotubes and Carbon Nanostructures, 32(4), 380–388. doi:10.1080/1536383X.2023.2287603.
[22] Nguyen, N. T., Ngo, T. V., Nguyen, K. K., Vu, V. Q., Xia, Y., Tran, M. Q., ... & Dang, S. N. (2024). Effects of Fly Ash and Graphene Oxide in Cement Mortar Considering the Local Recycled Material Context. Applied Sciences, 14(14), 6140. doi:10.3390/app14146140.
[23] Kumar, S., Bheel, N., Zardari, S., Alraeeini, A. S., Almaliki, A. H., & Benjeddou, O. (2024). Effect of graphene oxide on mechanical, deformation and drying shrinkage properties of concrete reinforced with fly ash as cementitious material by using RSM modelling. Scientific Reports, 14(1), 18675. doi:10.1038/s41598-024-69601-2.
[24] Almusallam, A. A. (2001). Effect of environmental conditions on the properties of fresh and hardened concrete. Cement and Concrete Composites, 23(4–5), 353–361. doi:10.1016/S0958-9465(01)00007-5.
[25] Alhamad, A., Yehia, S., Lublóy, É., & Elchalakani, M. (2022). Performance of different concrete types exposed to elevated temperatures: a review. Materials, 15(14), 5032. doi:10.3390/ma15145032.
[26] Lothenbach, B., Winnefeld, F., Alder, C., Wieland, E., & Lunk, P. (2007). Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes. Cement and Concrete Research, 37(4), 483–491. doi:10.1016/j.cemconres.2006.11.016.
[27] Mi, Z., Zheng, B., Fan, X., & Wang, Y. (2024). Influence of ambient temperature and humidity on the evolution of the tension softening behavior in concrete. Construction and Building Materials, 456, 139242. doi:10.1016/j.conbuildmat.2024.139242.
[28] Bagheri, A., Negahban, E., Asad, A., Abbasi, H. A., & Raza, S. M. (2022). Graphene oxide-incorporated cementitious composites: a thorough investigation. Materials Advances, 3(24), 9040–9051. doi:10.1039/d2ma00169a.
[29] Li, G., Zhou, C., Ahmad, W., Usanova, K. I., Karelina, M., Mohamed, A. M., & Khallaf, R. (2022). Fly Ash Application as Supplementary Cementitious Material: A Review. Materials, 15(7), 2664. doi:10.3390/ma15072664.
[30] Liu, C., Chen, F., Wu, Y., Zheng, Z., Yang, J., Yang, B., Yang, J., Hui, D., & Luo, Y. (2021). Research progress on individual effect of graphene oxide in cement-based materials and its synergistic effect with other nanomaterials. Nanotechnology Reviews, 10(1), 1208–1235. doi:10.1515/ntrev-2021-0080.
[31] Kaleta-Jurowska, A., & Jurowski, K. (2020). The influence of ambient temperature on high performance concrete properties. Materials, 13(20), 4646. doi:10.3390/ma13204646.
[32] Deutscher, M., Markert, M., & Scheerer, S. (2022). Influence of temperature on the compressive strength of high performance and ultra-high performance concretes. Structural Concrete, 23(4), 2381–2390. doi:10.1002/suco.202100153.
[33] ACI 308R-20. (2020). Guide to Hot Weather Concreting. American Concrete Institute (ACI), Farmington Hills, United States.
[34] El-Zohairy, A., Hammontree, H., Oh, E., & Moler, P. (2020). Temperature effect on the compressive behavior and constitutive model of plain hardened concrete. Materials, 13(12), 1–18. doi:10.3390/ma13122801.
[35] Shoukry, S. N., William, G. W., Downie, B., & Riad, M. Y. (2011). Effect of moisture and temperature on the mechanical properties of concrete. Construction and Building Materials, 25(2), 688–696. doi:10.1016/j.conbuildmat.2010.07.020.
[36] Ortiz, J., Aguado, A., Agulló, L., & García, T. (2005). Influence of environmental temperatures on the concrete compressive strength: Simulation of hot and cold weather conditions. Cement and Concrete Research, 35(10), 1970–1979. doi:10.1016/j.cemconres.2005.01.004.
[37] Gong, H., Yin, X., Zhang, Y., Wang, W., & Chen, Z. (2024). Influences of Graphene Oxide on Mechanical Properties and Mesoscopic Deformation and Failure Process of Concrete. Advances in Civil Engineering, 2408300. doi:10.1155/2024/2408300.
[38] Hu, Z. Y., Wan, Y., Duan, Y. J., Shi, Y. H., Gu, C. P., Ma, R., ... & Cui, D. (2025). A Review of the Impact of Graphene Oxide on Cement Composites. Nanomaterials, 15(3), 216. doi:10.3390/nano15030216.
[39] Ramana, I., & Parthasarathi, N. (2025). Synergistic effects of fly ash and graphene oxide composites at high temperatures and prediction using ANN and RSM approach. Scientific Reports, 15(1), 1604. doi:10.1038/s41598-024-83778-6.
[40] Hong, X., Lee, J. C., Ng, J. L., Md Yusof, Z., He, Q., & Li, Q. (2023). Effect of graphene oxide on the mechanical properties and durability of high-strength lightweight concrete containing shale ceramsite. Materials, 16(7), 2756. doi:10.3390/ma16072756.
[41] Habarudin, M. F., Shafiq, N., Zulkarnain, N. N., Md Yusof, M. A., A Razak, A. A., Sazali, Y. A., A Rahman, S. H., Riyanto, L., & Abd Hamid, A. I. (2024). Unlocking the potential of graphene oxide as an early strength enhancer for geopolymer well cement in extreme downhole environment. Cogent Engineering, 11(1), 2380021. doi:10.1080/23311916.2024.2380021.
[42] Patel, H. H., Bland, C. H., & Poole, A. B. (1995). The microstructure of concrete cured at elevated temperatures. Cement and Concrete Research, 25(3), 485–490. doi:10.1016/0008-8846(95)00036-C.
[43] Wang, J., Long, G., Xiang, Y., Dong, R., Tang, Z., Xiao, Q., Yang, Z., & Ma, K. (2022). Influence of rapid curing methods on concrete microstructure and properties: A review. Case Studies in Construction Materials, 17, 1600. doi:10.1016/j.cscm.2022.e01600.
[44] Udeze, O. J., Mohammed, B. S., Adebanjo, A. U., & Abdulkadir, I. (2024). Optimizing an eco-friendly high-density concrete for offshore applications: A study on fly ash partial replacement and graphene oxide nano reinforcement. Case Studies in Chemical and Environmental Engineering, 9, 100592. doi:10.1016/j.cscee.2023.100592.
[45] Djenaoucine, L., Picazo, Á., de la Rubia, M. A., Galvez, J. C., & Moragues, A. Graphene Oxide Effects on Hydration Products: Content and Morphology, 1-23. doi:10.2139/ssrn.5061464.
[46] Sharma, S., Susan, D., Kothiyal, N. C., & Kaur, R. (2018). Graphene oxide prepared from mechanically milled graphite: Effect on strength of novel fly-ash based cementitious matrix. Construction and Building Materials, 177, 10–22. doi:10.1016/j.conbuildmat.2018.05.051.
[47] Mehta, P.K. and Monteiro, P.J. (2014) Concrete: Microstructure, Properties, and Materials (4th Ed.). McGraw-Hill Education, New York, United States.
[48] Emmanuel, A. C., Krishnan, S., & Bishnoi, S. (2022). Influence of curing temperature on hydration and microstructural development of ordinary Portland cement. Construction and Building Materials, 329, 127070. doi:10.1016/j.conbuildmat.2022.127070.
[49] Yusuf, M. O. (2023). Bond characterization in cementitious material binders using Fourier-transform infrared spectroscopy. Applied Sciences, 13(5), 3353. doi:10.3390/app13053353.
[50] Hu, L., Chen, Z., Zhu, X., Yang, H., Zheng, X., & Liu, K. (2023). Effect of curing temperature on hydration and microstructure evolution of cement-based composites with extremely low w/b ratio. Developments in the Built Environment, 16, 100267. doi:10.1016/j.dibe.2023.100267.
[51] Gao, Y., Li, G., Chen, W., Shi, X., Gong, C., Shao, Q., & Liu, Y. (2024). Graphene oxide coated fly ash for reinforcing dynamic tensile behaviours of cementitious composites. Construction and Building Materials, 411, 134289. doi:10.1016/j.conbuildmat.2023.134289.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.