Mechanical and Physical Evaluations of Fine Sand-RAP Blends for Subgrade and Subbase Applications
Abstract
Â
Doi: 10.28991/CEJ-2025-011-05-017
Full Text: PDF
Keywords
References
Li, L., Zhang, Y., & Tian, Y. (2024). The Application of Fine Sand in Subgrades: A Review. Applied Sciences (Switzerland), 14(15), 6722. doi:10.3390/app14156722.
Mukiza, E., Zhang, L., Liu, X., & Zhang, N. (2019). Utilization of red mud in road base and subgrade materials: A review. Resources, Conservation and Recycling, 141, 187–199. doi:10.1016/j.resconrec.2018.10.031.
Xiao, J., Juang, C. H., Xu, C., Li, X., & Wang, L. (2014). Strength and deformation characteristics of compacted silt from the lower reaches of the Yellow River of China under monotonic and repeated loading. Engineering Geology, 178, 49–57. doi:10.1016/j.enggeo.2014.06.008.
USDA. (1999). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys (2nd Ed.). U.S. Government Printing Office (USDA), Washington, United States. doi:10.1097/00010694-197704000-00011.
ASTM D2487-17. (2020). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-17.
Mahvash, S., López-Querol, S., & Bahadori-Jahromi, A. (2018). Effect of fly ash on the bearing capacity of stabilised fine sand. Proceedings of the Institution of Civil Engineers: Ground Improvement, 171(2), 82–95. doi:10.1680/jgrim.17.00036.
Anvari, S. M., & Shooshpasha, I. (2016). Influence of size of granulated rubber on bearing capacity of fine-grained sand. Arabian Journal of Geosciences, 9(18), 707. doi:10.1007/s12517-016-2744-8.
Badrawi Attia, E. (2024). Influence of Geogrid-Axial Stiffness on Bearing Capacity of Geogrid-Reinforced Fine Sand. Port-Said Engineering Research Journal, 28(2), 41-49. doi:10.21608/pserj.2024.253870.1298.
Van Den Berg, J. H., Van Gelder, A., & Mastbergen, D. R. (2002). The importance of breaching as a mechanism of subaqueous slope failure in fine sand. Sedimentology, 49(1), 81–95. doi:10.1111/j.1525-139X.2006.00168.x-i1.
Martin, B. E., Chen, W., Song, B., & Akers, S. A. (2009). Moisture effects on the high strain-rate behavior of sand. Mechanics of Materials, 41(6), 786–798. doi:10.1016/j.mechmat.2009.01.014.
Hatten, J., & Liles, G. (2019). A ‘healthy’ balance – The role of physical and chemical properties in maintaining forest soil function in a changing world. Global Change and Forest Soils, 373–396, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-444-63998-1.00015-x.
Holtz, R. D. (2001). Construction Materials: Soil and Natural Materials. Encyclopedia of Materials: Science and Technology, 1559–1563, Elsevier, Amsterdam, Netherlands. doi:10.1016/b0-08-043152-6/00278-3.
Archibong, G. A., Sunday, E. U., Akudike, J. C., Okeke, O. C., & Amadi, C. (2020). A review of the principles and methods of soil stabilization. International Journal of Advanced Academic Research| Sciences, 6(3), 2488-9849.
Plati, C., & Tsakoumaki, M. (2023). Life Cycle Assessment (LCA) of Alternative Pavement Rehabilitation Solutions: A Case Study. Sustainability (Switzerland), 15(3), 2129. doi:10.3390/su15032129.
Zang, Y. X., Gong, W., Xie, H., Liu, B. L., & Chen, H. L. (2015). Chemical sand stabilization: A review of material, mechanism, and problems. Environmental Technology Reviews, 4(1), 119–132. doi:10.1080/21622515.2015.1105307.
Tao, G., Yuan, J., Chen, Q., Peng, W., Yu, R., & Basack, S. (2021). Chemical stabilization of calcareous sand by polyurethane foam adhesive. Construction and Building Materials, 295, 123609. doi:10.1016/j.conbuildmat.2021.123609.
Szendefy, J. (2013). Impact of the soil-stabilization with lime. Proceedings of the 18th international conference on soil mechanics and geotechnical engineering, 2-6 September, 2013, Paris, France.
Wang, S., Zhang, X., Zhang, P., & Chen, Z. (2023). Strength Performance and Stabilization Mechanism of Fine Sandy Soils Stabilized with Cement and Metakaolin. Sustainability (Switzerland), 15(4), 3431. doi:10.3390/su15043431.
Markiewicz, A., Koda, E., & Kawalec, J. (2022). Geosynthetics for Filtration and Stabilisation: A Review. Polymers, 14(24), 5492. doi:10.3390/polym14245492.
Andavan, S., & Kumar, B. M. (2020). Case study on soil stabilization by using bitumen emulsions – A review. Materials Today: Proceedings, 22, 1200–1202. doi:10.1016/j.matpr.2019.12.121.
Rezaeimalek, S., Nasouri, A., Huang, J., Bin-Shafique, S., & Gilazghi, S. T. (2017). Comparison of short-term and long-term performances for polymer-stabilized sand and clay. Journal of Traffic and Transportation Engineering, 4(2), 145–155. doi:10.1016/j.jtte.2017.01.003.
Vidal, R., Moliner, E., MartÃnez, G., & Rubio, M. C. (2013). Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement. Resources, Conservation and Recycling, 74, 101–114. doi:10.1016/j.resconrec.2013.02.018.
Aurangzeb, Q., & Al-Qadi, I. L. (2014). Asphalt pavements with high reclaimed asphalt pavement content: Economic and environmental perspectives. Transportation Research Record, 2456(1), 161–169. doi:10.3141/2456-16.
Willis, J.R. (2015). Effect of recycled materials on pavement Life-Cycle Assessment: A case study. Proceedings of the 94th Annual Meeting of the Transportation Research Board, 11–15 January, 2015 Washington, United States.
Bloom, E., Canton, A., Ahlman, A. P., & Edil, T. (2017). Life cycle assessment of highway reconstruction: A case study. Proceedings of the 96th Transportation Research Board Annual Meeting, 8–12 January, 2017, Washington, United States.
Gruber, M. R., & Hofko, B. (2023). Life Cycle Assessment of Greenhouse Gas Emissions from Recycled Asphalt Pavement Production. Sustainability (Switzerland), 15(5), 4529. doi:10.3390/su15054629.
EAPA. (2022). Asphalt in figures 2022. European Asphalt Pavement Association (EAPA), Brussels, Belgium.
Williams, B.A., Willis, J.R., & Shacat, J. (2020). Asphalt pavement industry survey on recycled materials and warm-mix asphalt usage: 2020. National Asphalt Pavement Association: Greenbelt, United States.
Yousefdoost, S., Rebbechi, J., & Petho, L. (2016). P57: Implementing the use of reclaimed asphalt pavement (RAP) in TMR-registered dense-graded asphalt mixes. Project No: PRP16033, National Centre of Excellence (NACOE), Fortitude Valley, United Kingdom.
ARRB. (2022). Best Practice Expert Advice on the Use of Recycled Materials in Road and Rail Infrastructure: Part A Technical Review and Assessment. Australian Road Research Board (ARRB), Melbourne, Australia.
SABITA. (2021). Use of Reclaimed Asphalt in the Production of Asphalt, TRH 21. Southern African Bitumen Association (SABITA), Pinelands, South Africa.
32-Mousa, E., El-Badawy, S., & Azam, A. (2021). Evaluation of reclaimed asphalt pavement as base/subbase material in Egypt. Transportation Geotechnics, 26, 100414. doi:10.1016/j.trgeo.2020.100414.
Cubas, M., Correa, E., Benavides, W., Suclupe, R., & Arriola, G. (2025). Modified Asphalt Mixtures Incorporating Pulverized Recycled Rubber and Recycled Asphalt Pavement. Civil Engineering Journal (Iran), 11(2), 420–436. doi:10.28991/CEJ-2025-011-02-02.
Chfat, A. H. Z., Yaacob, H., Kamaruddin, N. M., Al-Saffar, Z. H., & Jaya, R. P. (2024). Performance of Asphalt Mixtures Modified with Nano-Eggshell Powder. Civil Engineering Journal, 10(11), 3699-3720. doi:10.28991/CEJ-2024-010-11-016.
Suddeepong, A., Akkharawongwhatthana, K., Horpibulsuk, S., Buritatum, A., Hoy, M., Yaowarat, T., Pongsri, N., Chinkulkijniwat, A., Arulrajah, A., & Horpibulsuk, J. (2024). Polyethylene Terephthalate Modified Asphalt Concrete with Blended Recycled Aggregates: Analysis and Assessment. Civil Engineering Journal (Iran), 10(11), 3569–3588. doi:10.28991/CEJ-2024-010-11-08.
Tsakoumaki, M., & Plati, C. (2024). A Critical Overview of Using Reclaimed Asphalt Pavement (RAP) in Road Pavement Construction. Infrastructures, 9(8), 128. doi:10.3390/infrastructures9080128.
Tarsi, G., Tataranni, P., & Sangiorgi, C. (2020). The challenges of using reclaimed asphalt pavement for new asphalt mixtures: A review. Materials, 13(18), 4052. doi:10.3390/ma13184052.
Zhang, K., Huchet, F., & Hobbs, A. (2019). A review of thermal processes in the production and their influences on performance of asphalt mixtures with reclaimed asphalt pavement (RAP). Construction and Building Materials, 206, 609–619. doi:10.1016/j.conbuildmat.2019.02.057.
Hung, V. Q., Jayarathne, A., Gallage, C., Dawes, L., Egodawatta, P., & Jayakody, S. (2024). Leaching characteristics of metals from recycled concrete aggregates (RCA) and reclaimed asphalt pavements (RAP). Heliyon, 10(9), e30407. doi:10.1016/j.heliyon.2024.e30407.
Al-Shujairi, A. O., Al-Taie, A. J., & Al-Mosawe, H. M. (2021). Review on applications of RAP in civil engineering. IOP Conference Series: Materials Science and Engineering, 1105(1), 012092. doi:10.1088/1757-899x/1105/1/012092.
Puppala, A. J., Saride, S., & Williammee, R. (2012). Sustainable Reuse of Limestone Quarry Fines and RAP in Pavement Base/Subbase Layers. Journal of Materials in Civil Engineering, 24(4), 418–429. doi:10.1061/(asce)mt.1943-5533.0000404.
Mousa, R. M., & Mousa, M. R. (2019). Cost–Benefit Analysis of RAP–Sand Blend Applications in Road Construction. Transportation Research Record, 2673(2), 415–426. doi:10.1177/0361198118823495.
Buhari, B. M., Jose, A., Muhammed, A., Abhilash, S., & Shaji, S. (2025). Experimental Investigation on Concrete using RAP & QBP as Aggregates. AIP Conference Proceedings, 3280(1), 30007. doi:10.1063/5.0247522.
Tiza, M. T., Agunwamba, J., Okafor, F., & Solomon, S. (2025). Prediction and Optimization of Compressive Strength of Cement Concrete with Box-Behnken Model. Journal of International Environmental Application and Science, 20(1), 56-69
Suddeepong, A., Intra, A., Horpibulsuk, S., Suksiripattanapong, C., Arulrajah, A., & Shen, J. S. (2018). Durability against wetting-drying cycles for cement-stabilized reclaimed asphalt pavement blended with crushed rock. Soils and Foundations, 58(2), 333–343. doi:10.1016/j.sandf.2018.02.017.
Miao, Y., Wang, S., Guo, L., Zheng, X., Huang, Y., & Wang, L. (2018). Effect of temperature on deformation properties of unbound granular materials containing fine RAP. Construction and Building Materials, 169, 443–451. doi:10.1016/j.conbuildmat.2018.02.154.
Adhikari, S., Khattak, M. J., & Adhikari, B. (2020). Mechanical characteristics of Soil-RAP-Geopolymer mixtures for road base and subbase layers. International Journal of Pavement Engineering, 21(4), 483–496. doi:10.1080/10298436.2018.1492131.
Hasan, M. M., Islam, M. R., & Tarefder, R. A. (2018). Characterization of subgrade soil mixed with recycled asphalt pavement. Journal of Traffic and Transportation Engineering (English Edition), 5(3), 207–214. doi:10.1016/j.jtte.2017.03.007.
Suebsuk, J., Suksan, A., & Horpibulsuk, S. (2014). Strength assessment of cement treated soil-reclaimed asphalt pavement (RAP) mixture. International Journal of GEOMATE, 6(2), 878–884. doi:10.21660/2014.12.3262.
Lima, D., Arrieta-Baldovino, J., & Izzo, R. L. S. (2023). Sustainable Use of Recycled Asphalt Pavement in Soil Stabilization. Civil Engineering Journal (Iran), 9(9), 2315–2329. doi:10.28991/CEJ-2023-09-09-016.
ASTM D6913/D6913M-17. (2021). Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. ASTM International, Pennsylvania, United States. doi:10.1520/D6913_D6913M-17.
ASTM D854-23. (2000). Standard Test Methods for Specific Gravity of Soil Solids by the Water Displacement Method. ASTM International. ASTM International, Pennsylvania, United States. doi:10.1520/D0854-23.
ASTM D698-12(2021). (2012). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, Pennsylvania, United States. doi:10.1520/D0698-12R21.
ASTM D1883-21. (2021). Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D1883-21.
ASTM D1194-94. (2017). Standard Test Method for Bearing Capacity of Soil for Static Load and Spread Footings (Withdrawn 2003). ASTM International, Pennsylvania, United States.
ECP-104. (2018). Egyptian Code of Practice for Urban and Rural Roads, edition 1: Road materials and their tests (part four). Housing and Building National Research Center (HBRC), Cairo, Egypt.
Das, B. M., & Sivakugan, N. (2018). Principles of Foundation Engineering. Cengage Learning, Boston, United States.
Bowles, J. E., & Guo, Y. (1996). Foundation Analysis and Design. McGraw-Hill, New York, United States
Vinod, P., Bhaskar, A. B., & Sreehari, S. (2009). Behaviour of a square model footing on loose sand reinforced with braided coir rope. Geotextiles and Geomembranes, 27(6), 464–474. doi:10.1016/j.geotexmem.2009.08.001.
El Sawwaf, M., & Nazir, A. (2012). Behavior of Eccentrically Loaded Small-Scale Ring Footings Resting on Reinforced Layered Soil. Journal of Geotechnical and Geoenvironmental Engineering, 138(3), 376–384. doi:10.1061/(asce)gt.1943-5606.0000593.
Azzam, W. R., & Elwakil, A. Z. (2017). Performance of Axially Loaded-Piled Retaining Wall: Experimental and Numerical Analysis. International Journal of Geomechanics, 17(2). doi:10.1061/(asce)gm.1943-5622.0000710.
Mayne, P. W. (2007). In-situ test calibrations for evaluating soil parameters. Characterisation and Engineering Properties of Natural Soils, 3–4, 1601–1652, Taylor & Francis Group, London, United Kingdom. doi:10.1201/noe0415426916.ch2.
Mishra, S., Sachdeva, S. N., & Manocha, R. (2019). Subgrade Soil Stabilization Using Stone Dust and Coarse Aggregate: A Cost Effective Approach. International Journal of Geosynthetics and Ground Engineering, 5(3), 1–11. doi:10.1007/s40891-019-0171-0.
Taha, R., Ali, G., Basma, A., & Al-Turk, O. (1999). Evaluation of Reclaimed Asphalt Pavement Aggregate in Road Bases and Subbases. Transportation Research Record: Journal of the Transportation Research Board, 1652(1), 264–269. doi:10.3141/1652-33.
Seferoǧlu, A. G., Seferoǧlu, M. T., & Akpinar, M. V. (2018). Investigation of the Effect of Recycled Asphalt Pavement Material on Permeability and Bearing Capacity in the Base Layer. Advances in Civil Engineering, 2018(1), 2860213. doi:10.1155/2018/2860213.
Kalpakci, V., Faeq, R., & Canakci, H. (2018). Compaction and CBR properties of RAP/sand blends in Iraq. Arabian Journal of Geosciences, 11(21), 1–7. doi:10.1007/s12517-018-4033-1.
De Beer, E. E. (1970). Experimental determination of the shape factors and the bearing capacity factors of sand. Geotechnique, 20(4), 387–411. doi:10.1680/geot.1970.20.4.387.
DOI: 10.28991/CEJ-2025-011-05-017
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Mohamed Hamed Zakaria, Mostafa El-Fewy, Sabry Fayed, Ali Basha

This work is licensed under a Creative Commons Attribution 4.0 International License.