Performance Evaluation of Alkaline Activated Geopolymer Binders Using RCA and Industrial By-Products as Cement Alternatives
Vol. 11 No. 2 (2025): February
Research Articles
Downloads
Doi: 10.28991/CEJ-2025-011-02-018
Full Text: PDF
Shaaban, M., Edris, W. F., Al Sayed, A. A.-K. A., Alrashidi, R. S., & Selouma, T. I. (2025). Performance Evaluation of Alkaline Activated Geopolymer Binders Using RCA and Industrial By-Products as Cement Alternatives. Civil Engineering Journal, 11(2), 704–725. https://doi.org/10.28991/CEJ-2025-011-02-018
[1] John, S. K., Nadir, Y., & Girija, K. (2021). Effect of source materials, additives on the mechanical properties and durability of fly ash and fly ash-slag geopolymer mortar: A review. Construction and Building Materials, 280, 122443. doi:10.1016/j.conbuildmat.2021.122443.
[2] Chen, K., Wu, D., Yi, M., Cai, Q., & Zhang, Z. (2021). Mechanical and durability properties of metakaolin blended with slag geopolymer mortars used for pavement repair. Construction and Building Materials, 281, 122566. doi:10.1016/j.conbuildmat.2021.122566.
[3] Poornima, N., Katyal, D., Revathi, T., Sivasakthi, M., & Jeyalakshmi, R. (2021). Effect of curing on mechanical strength and microstructure of fly ash blend GGBS geopolymer, Portland cement mortar and its behavior at elevated temperature. Materials Today: Proceedings, 47, 863–870. doi:10.1016/j.matpr.2021.04.087.
[4] Singh, N. B., & Middendorf, B. (2020). Geopolymers as an alternative to Portland cement: An overview. Construction and Building Materials, 237, 1–15. doi:10.1016/j.conbuildmat.2019.117455.
[5] Matsimbe, J., Dinka, M., Olukanni, D., & Musonda, I. (2024). Performance evaluation and mix design of ambient-cured fly ash-phosphogypsum blended geopolymer paste and mortar. Results in Engineering, 24, 103280. doi:10.1016/j.rineng.2024.103280.
[6] Hwalla, J., El-Hassan, H., El-Mir, A., Assaad, J. J., & El-Maaddawy, T. (2024). Development of geopolymer and cement-based shotcrete mortar: Impact of mix design parameters and spraying process. Construction and Building Materials, 449, 138457. doi:10.1016/j.conbuildmat.2024.138457.
[7] Ghanim, H. A. A. E., Alengaram, U. J., Bunnori, N. M., & Ibrahim, M. S. I. (2025). Innovative in-house sodium silicate derived from coal bottom ash and its impact on geopolymer mortar. Journal of Building Engineering, 99, 111428. doi:10.1016/j.jobe.2024.111428.
[8] Bezabih, T., Sinkhonde, D., & Mirindi, D. (2025). On the surface roughness properties of fly ash-based geopolymer mortars with teff straw ash from the image analysis viewpoint. Green Technologies and Sustainability, 3(1), 100127. doi:10.1016/j.grets.2024.100127.
[9] Ardhira, P. J., Shukla, S. K., & Sathyan, D. (2024). Synthesis of geopolymer mortar from biomass ashes and forecasting its compressive strength behaviour. Case Studies in Construction Materials, 21, 3581. doi:10.1016/j.cscm.2024.e03581.
[10] Rezzoug, A., Leklou, N., Ayed, K., & Maryam, H. (2024). Enhancing geopolymer mortars for environmental sustainability: A novel approach using frits and ceramic waste. Next Research, 1(2), 100024. doi:10.1016/j.nexres.2024.100024.
[11] Chowdhury, S., Mohapatra, S., Gaur, A., Dwivedi, G., & Soni, A. (2021). Study of various properties of geopolymer concrete – A review. Materials Today: Proceedings, 46, 5687–5695. doi:10.1016/j.matpr.2020.09.835.
[12] Chen, Y., Zou, C., Yeo, J. S., Lin, J., Tan, T. H., & Mo, K. H. (2025). Valorization of high-volume crushed waste glass as fine aggregate in foamed geopolymer. Case Studies in Construction Materials, 22, 4202. doi:10.1016/j.cscm.2025.e04202.
[13] Sontia Metekong, J. V., Kaze, C. R., Deutou, J. G., Venyite, P., Nana, A., Kamseu, E., Melo, U. C., & Tatietse, T. T. (2021). Evaluation of performances of volcanic-ash-laterite based blended geopolymer concretes: Mechanical properties and durability. Journal of Building Engineering, 34, 101935. doi:10.1016/j.jobe.2020.101935.
[14] Wang, T., Fan, X., & Gao, C. (2024). Strength, pore characteristics, and characterization of fly ash-slag-based geopolymer mortar modified with silica fume. Structures, 69, 107525. doi:10.1016/j.istruc.2024.107525.
[15] Kogbara, R. B., Al-Zubi, A., & Masad, E. A. (2024). Dataset on early-age strength of ambient-cured geopolymer mortars from waste concrete and bricks with different alkaline activators. Data in Brief, 56, 110800. doi:10.1016/j.dib.2024.110800.
[16] Çeli̇kten, S., Bayer Öztürk, Z., & Atabey, İ. İ. (2024). High-temperature resistance of ceramic sanitaryware waste and fly ash-based geopolymer and hybrid geopolymer mortars produced at ambient curing conditions. Construction and Building Materials, 446, 137990. doi:10.1016/j.conbuildmat.2024.137990.
[17] Mahmood, A. H., Foster, S. J., & Castel, A. (2021). Effects of mixing duration on engineering properties of geopolymer concrete. Construction and Building Materials, 303(April), 124449. doi:10.1016/j.conbuildmat.2021.124449.
[18] Rezzoug, A., Ayed, K., & Leklou, N. (2024). Thermal, mechanical and microstructural properties of geopolymer mortars derived from ceramic sanitary-ware wastes: Pathway to net zero emission. Ceramics International, 50(24), 55535-55545. doi:10.1016/j.ceramint.2024.10.414.
[19] Alharbi, Y. R., & Albidah, A. (2024). Synthesis of geopolymer mortar incorporating date palm ash. Construction and Building Materials, 449, 138512. doi:10.1016/j.conbuildmat.2024.138512.
[20] Rashad, A. M., Essa, G. M. F., Morsi, W. M., & Fahmy, E. A. (2024). Calcium nitrate as a modifier agent for metakaolin-based geopolymer mortar. Construction and Building Materials, 456, 139199. doi:10.1016/j.conbuildmat.2024.139199.
[21] Zhang, X., Li, H., Wang, H., Yan, P., Shan, L., & Hua, S. (2024). Properties of RCA stabilized with alkali-activated steel slag based materials in pavement base: Laboratory tests, field application and carbon emissions. Construction and Building Materials, 411, 134547. doi:10.1016/j.conbuildmat.2023.134547.
[22] Ariyadasa, P. W., Manalo, A. C., Lokuge, W., Aravinthan, V., Pasupathy, K., & Gerdes, A. (2024). Bond performance of fly ash-based geopolymer mortar in simulated concrete sewer substrate. Construction and Building Materials, 446, 137927. doi:10.1016/j.conbuildmat.2024.137927.
[23] Jain, S., Banthia, N., & Troczynski, T. (2022). Leaching of immobilized cesium from NaOH-activated fly ash-based geopolymers. Cement and Concrete Composites, 133, 104679. doi:10.1016/j.cemconcomp.2022.104679.
[24] Mohana, R., & Bharathi, S. M. L. (2024). Assessment on the mesh and mortar effect of the impact resistant nano fly ash based geopolymer ferrocement panels using rubber and plastic aggregates. Structures, 68, 107147. doi:10.1016/j.istruc.2024.107147.
[25] Huang, W., & Wang, H. (2024). Formulation development of metakaolin geopolymer with good workability for strength improvement and shrinkage reduction. Journal of Cleaner Production, 434, 140431. doi:10.1016/j.jclepro.2023.140431.
[26] Zhang, X., Bai, C., Qiao, Y., Wang, X., Jia, D., Li, H., & Colombo, P. (2021). Porous geopolymer composites: A review. Composites Part A: Applied Science and Manufacturing, 150, 106629. doi:10.1016/j.compositesa.2021.106629.
[27] Mohammadinia, A., Arulrajah, A., D'Amico, A., & Horpibulsuk, S. (2018). Alkali-activation of fly ash and cement kiln dust mixtures for stabilization of demolition aggregates. Construction and Building Materials, 186, 71–78. doi:10.1016/j.conbuildmat.2018.07.103.
[28] Damrongwiriyanupap, N., Wachum, A., Khansamrit, K., Detphan, S., Hanjitsuwan, S., Phoo-ngernkham, T., Sukontasukkul, P., Li, L. yuan, & Chindaprasirt, P. (2022). Improvement of recycled concrete aggregate using alkali-activated binder treatment. Materials and Structures/Materiaux et Constructions, 55(1), 1–20. doi:10.1617/s11527-021-01836-1.
[29] Yang, Z., Zhu, H., Zhang, B., Dong, Z., & Zhang, G. (2024). Fracture characteristics and microscopic mechanism of slag-based marine geopolymer mortar prepared with seawater and sea-sand. Construction and Building Materials, 450, 138561. doi:10.1016/j.conbuildmat.2024.138561.
[30] El Abd, A., Taman, M., Behiry, R. N., El-Naggar, M. R., Eissa, M., Hassan, A. M. A., Bar, W. A., Mongy, T., Osman, M., Hassan, A., Nabawy, B. S., & Rayan, A. M. (2024). Neutron imaging of moisture transport, water absorption characteristics and strength properties for fly ash/slag blended geopolymer mortars: Effect of drying temperature. Construction and Building Materials, 449, 138436. doi:10.1016/j.conbuildmat.2024.138436.
[31] Irum, S., & Shabbir, F. (2024). Performance of fly ash/GGBFS based geopolymer concrete with recycled fine and coarse aggregates at hot and ambient curing. Journal of Building Engineering, 95, 110148. doi:10.1016/j.jobe.2024.110148.
[32] Cheah, C. B., Tan, L. E., & Ramli, M. (2021). Recent advances in slag-based binder and chemical activators derived from industrial by-products – A review. Construction and Building Materials, 272, 121657. doi:10.1016/j.conbuildmat.2020.121657.
[33] Marathe, S., Sheshadri, A., & Sadowski, Š. (2024). Agro-industrial waste utilization in air-cured alkali-activated pavement composites: Properties, micro-structural insights and life cycle impacts. Cleaner Materials, 14, 100281. doi:10.1016/j.clema.2024.100281.
[34] Tejas, S., & Pasla, D. (2024). Influence of agricultural waste ash on the mechanical strength of alkali-activated slag recycled aggregate concrete from a microstructural perspective. Innovative Infrastructure Solutions, 9(8), 335. doi:10.1007/s41062-024-01651-x.
[35] Xiaoshuang, S., Yanpeng, S., Jinqian, L., Yuhao, Z., & Ruihan, H. (2024). Preparation and performance optimization of fly ash- slag- red mud based geopolymer mortar: Simplex-centroid experimental design method. Construction and Building Materials, 450, 138573. doi:10.1016/j.conbuildmat.2024.138573.
[36] Huang, X., Tian, Y., Jiang, J., Lu, X., He, Z., & Jia, K. (2024). Mechanical properties and enhancement mechanism of iron ore tailings as aggregate for manufacturing ultra-high performance geopolymer concrete. Construction and Building Materials, 439, 137362. doi:10.1016/j.conbuildmat.2024.137362.
[37] Uğurlu, A. İ., Karakoç, M. B., & Özcan, A. (2021). Effect of binder content and recycled concrete aggregate on freeze-thaw and sulfate resistance of GGBFS based geopolymer concretes. Construction and Building Materials, 301, 124246. doi:10.1016/j.conbuildmat.2021.124246.
[38] Reddy, R.K., Yaragal, S. C., & Sagar Srinivasa, A. (2023). One-part eco-friendly alkali-activated concrete – An innovative sustainable alternative. Construction and Building Materials, 408, 133741. doi:10.1016/j.conbuildmat.2023.133741.
[39] Udhaya Kumar, T., & Vinod Kumar, M. (2020). Investigation on mechanical properties of geopolymer aggregate concrete. Materials Today: Proceedings, 43, 1220–1225. doi:10.1016/j.matpr.2020.08.758.
[40] Nikmehr, B., Kafle, B., & Al-Ameri, R. (2024). A review of the advanced treatment techniques for enriching the recycled concrete aggregates for recycled-based concrete: economic, environmental and technical analysis. Smart and Sustainable Built Environment, 13(3), 560–583. doi:10.1108/SASBE-11-2022-0243.
[41] Hassani, A., & Kazemian, F. (2024). Investigating geopolymer mortar incorporating industrial waste using response surface methodology: A sustainable approach for construction materials. Case Studies in Construction Materials, 21, 3609. doi:10.1016/j.cscm.2024.e03609.
[42] Shahid, M. J., Khan, H. A., Khan, M. Z. N., Ahmad, J., & Abdullah, M. (2024). Optimization of an alkali activator solution to enhance the performance of roller-compacted concrete for pavements (RCCP). International Journal of Pavement Engineering, 25(1), 2318609. doi:10.1080/10298436.2024.2318609.
[43] Kumar, C. B. (2022). Performance Evaluation of Ferrochrome ASH Based Alkali Activated Slag Mortars. Ph.D. Thesis, National Institute of Technology Karnataka, Mangaluru, India.
[44] ASTM C33/C33M-18. Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.
[45] ASTM C150/C150M-19. (2019). Standard Specification for Portland Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0150_C0150M-19.
[46] ASTM C1602/C1602M-22. (2022). Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C1602_C1602M-22.
[47] ASTM C191-21. (2021). Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle. ASTM International, Pennsylvania, United States. doi:10.1520/C0191-21.
[48] ASTM C1437-20. (2020). Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM International, Pennsylvania, United States. doi:10.1520/C1437-20.
[49] ASTM C109/C109M-20. (2020). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, Pennsylvania, United States. doi:10.1520/C0109_C0109M-20.
[50] ASTM C1709-18. (2023). Standard Guide for Evaluation of Alternative Supplementary Cementitious Materials (ASCM) for Use in Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C1709-18.
[51] BS EN 1015. (2019). Methods of test for mortar for masonry - Determination of flexural and compressive strength of hardened mortar. British Standard Institute (BSI), London, United Kingdom.
[52] Anju, M. J., Beulah, M., & Varghese, A. (2024). Review of Geopolymer Composites Synthesized Using Different Industrial By-products. International Journal of Pavement Research and Technology. doi:10.1007/s42947-024-00446-8.
[53] Poletanovic, B., Kopecsko, K., & Merta, I. (2024). Fibre hornification improves the long-term properties of hemp fibre-reinforced fly ash-based geopolymer mortar. Construction and Building Materials, 446, 137957. doi:10.1016/j.conbuildmat.2024.137957.
[54] Singh, R. P., Vanapalli, K. R., Jadda, K., & Mohanty, B. (2024). Durability assessment of fly ash, GGBS, and silica fume based geopolymer concrete with recycled aggregates against acid and sulfate attack. Journal of Building Engineering, 82, 108354. doi:10.1016/j.jobe.2023.108354.
[55] Rahman, S. S., & Khattak, M. J. (2023). Feasibility of Reclaimed Asphalt Pavement Geopolymer Concrete as a Pavement Construction Material. International Journal of Pavement Research and Technology, 16(4), 888–907. doi:10.1007/s42947-022-00169-8.
[56] Walkley, B., Ke, X., Hussein, O. H., Bernal, S. A., & Provis, J. L. (2020). Incorporation of strontium and calcium in geopolymer gels. Journal of Hazardous Materials, 382, 121015. doi:10.1016/j.jhazmat.2019.121015.
[2] Chen, K., Wu, D., Yi, M., Cai, Q., & Zhang, Z. (2021). Mechanical and durability properties of metakaolin blended with slag geopolymer mortars used for pavement repair. Construction and Building Materials, 281, 122566. doi:10.1016/j.conbuildmat.2021.122566.
[3] Poornima, N., Katyal, D., Revathi, T., Sivasakthi, M., & Jeyalakshmi, R. (2021). Effect of curing on mechanical strength and microstructure of fly ash blend GGBS geopolymer, Portland cement mortar and its behavior at elevated temperature. Materials Today: Proceedings, 47, 863–870. doi:10.1016/j.matpr.2021.04.087.
[4] Singh, N. B., & Middendorf, B. (2020). Geopolymers as an alternative to Portland cement: An overview. Construction and Building Materials, 237, 1–15. doi:10.1016/j.conbuildmat.2019.117455.
[5] Matsimbe, J., Dinka, M., Olukanni, D., & Musonda, I. (2024). Performance evaluation and mix design of ambient-cured fly ash-phosphogypsum blended geopolymer paste and mortar. Results in Engineering, 24, 103280. doi:10.1016/j.rineng.2024.103280.
[6] Hwalla, J., El-Hassan, H., El-Mir, A., Assaad, J. J., & El-Maaddawy, T. (2024). Development of geopolymer and cement-based shotcrete mortar: Impact of mix design parameters and spraying process. Construction and Building Materials, 449, 138457. doi:10.1016/j.conbuildmat.2024.138457.
[7] Ghanim, H. A. A. E., Alengaram, U. J., Bunnori, N. M., & Ibrahim, M. S. I. (2025). Innovative in-house sodium silicate derived from coal bottom ash and its impact on geopolymer mortar. Journal of Building Engineering, 99, 111428. doi:10.1016/j.jobe.2024.111428.
[8] Bezabih, T., Sinkhonde, D., & Mirindi, D. (2025). On the surface roughness properties of fly ash-based geopolymer mortars with teff straw ash from the image analysis viewpoint. Green Technologies and Sustainability, 3(1), 100127. doi:10.1016/j.grets.2024.100127.
[9] Ardhira, P. J., Shukla, S. K., & Sathyan, D. (2024). Synthesis of geopolymer mortar from biomass ashes and forecasting its compressive strength behaviour. Case Studies in Construction Materials, 21, 3581. doi:10.1016/j.cscm.2024.e03581.
[10] Rezzoug, A., Leklou, N., Ayed, K., & Maryam, H. (2024). Enhancing geopolymer mortars for environmental sustainability: A novel approach using frits and ceramic waste. Next Research, 1(2), 100024. doi:10.1016/j.nexres.2024.100024.
[11] Chowdhury, S., Mohapatra, S., Gaur, A., Dwivedi, G., & Soni, A. (2021). Study of various properties of geopolymer concrete – A review. Materials Today: Proceedings, 46, 5687–5695. doi:10.1016/j.matpr.2020.09.835.
[12] Chen, Y., Zou, C., Yeo, J. S., Lin, J., Tan, T. H., & Mo, K. H. (2025). Valorization of high-volume crushed waste glass as fine aggregate in foamed geopolymer. Case Studies in Construction Materials, 22, 4202. doi:10.1016/j.cscm.2025.e04202.
[13] Sontia Metekong, J. V., Kaze, C. R., Deutou, J. G., Venyite, P., Nana, A., Kamseu, E., Melo, U. C., & Tatietse, T. T. (2021). Evaluation of performances of volcanic-ash-laterite based blended geopolymer concretes: Mechanical properties and durability. Journal of Building Engineering, 34, 101935. doi:10.1016/j.jobe.2020.101935.
[14] Wang, T., Fan, X., & Gao, C. (2024). Strength, pore characteristics, and characterization of fly ash-slag-based geopolymer mortar modified with silica fume. Structures, 69, 107525. doi:10.1016/j.istruc.2024.107525.
[15] Kogbara, R. B., Al-Zubi, A., & Masad, E. A. (2024). Dataset on early-age strength of ambient-cured geopolymer mortars from waste concrete and bricks with different alkaline activators. Data in Brief, 56, 110800. doi:10.1016/j.dib.2024.110800.
[16] Çeli̇kten, S., Bayer Öztürk, Z., & Atabey, İ. İ. (2024). High-temperature resistance of ceramic sanitaryware waste and fly ash-based geopolymer and hybrid geopolymer mortars produced at ambient curing conditions. Construction and Building Materials, 446, 137990. doi:10.1016/j.conbuildmat.2024.137990.
[17] Mahmood, A. H., Foster, S. J., & Castel, A. (2021). Effects of mixing duration on engineering properties of geopolymer concrete. Construction and Building Materials, 303(April), 124449. doi:10.1016/j.conbuildmat.2021.124449.
[18] Rezzoug, A., Ayed, K., & Leklou, N. (2024). Thermal, mechanical and microstructural properties of geopolymer mortars derived from ceramic sanitary-ware wastes: Pathway to net zero emission. Ceramics International, 50(24), 55535-55545. doi:10.1016/j.ceramint.2024.10.414.
[19] Alharbi, Y. R., & Albidah, A. (2024). Synthesis of geopolymer mortar incorporating date palm ash. Construction and Building Materials, 449, 138512. doi:10.1016/j.conbuildmat.2024.138512.
[20] Rashad, A. M., Essa, G. M. F., Morsi, W. M., & Fahmy, E. A. (2024). Calcium nitrate as a modifier agent for metakaolin-based geopolymer mortar. Construction and Building Materials, 456, 139199. doi:10.1016/j.conbuildmat.2024.139199.
[21] Zhang, X., Li, H., Wang, H., Yan, P., Shan, L., & Hua, S. (2024). Properties of RCA stabilized with alkali-activated steel slag based materials in pavement base: Laboratory tests, field application and carbon emissions. Construction and Building Materials, 411, 134547. doi:10.1016/j.conbuildmat.2023.134547.
[22] Ariyadasa, P. W., Manalo, A. C., Lokuge, W., Aravinthan, V., Pasupathy, K., & Gerdes, A. (2024). Bond performance of fly ash-based geopolymer mortar in simulated concrete sewer substrate. Construction and Building Materials, 446, 137927. doi:10.1016/j.conbuildmat.2024.137927.
[23] Jain, S., Banthia, N., & Troczynski, T. (2022). Leaching of immobilized cesium from NaOH-activated fly ash-based geopolymers. Cement and Concrete Composites, 133, 104679. doi:10.1016/j.cemconcomp.2022.104679.
[24] Mohana, R., & Bharathi, S. M. L. (2024). Assessment on the mesh and mortar effect of the impact resistant nano fly ash based geopolymer ferrocement panels using rubber and plastic aggregates. Structures, 68, 107147. doi:10.1016/j.istruc.2024.107147.
[25] Huang, W., & Wang, H. (2024). Formulation development of metakaolin geopolymer with good workability for strength improvement and shrinkage reduction. Journal of Cleaner Production, 434, 140431. doi:10.1016/j.jclepro.2023.140431.
[26] Zhang, X., Bai, C., Qiao, Y., Wang, X., Jia, D., Li, H., & Colombo, P. (2021). Porous geopolymer composites: A review. Composites Part A: Applied Science and Manufacturing, 150, 106629. doi:10.1016/j.compositesa.2021.106629.
[27] Mohammadinia, A., Arulrajah, A., D'Amico, A., & Horpibulsuk, S. (2018). Alkali-activation of fly ash and cement kiln dust mixtures for stabilization of demolition aggregates. Construction and Building Materials, 186, 71–78. doi:10.1016/j.conbuildmat.2018.07.103.
[28] Damrongwiriyanupap, N., Wachum, A., Khansamrit, K., Detphan, S., Hanjitsuwan, S., Phoo-ngernkham, T., Sukontasukkul, P., Li, L. yuan, & Chindaprasirt, P. (2022). Improvement of recycled concrete aggregate using alkali-activated binder treatment. Materials and Structures/Materiaux et Constructions, 55(1), 1–20. doi:10.1617/s11527-021-01836-1.
[29] Yang, Z., Zhu, H., Zhang, B., Dong, Z., & Zhang, G. (2024). Fracture characteristics and microscopic mechanism of slag-based marine geopolymer mortar prepared with seawater and sea-sand. Construction and Building Materials, 450, 138561. doi:10.1016/j.conbuildmat.2024.138561.
[30] El Abd, A., Taman, M., Behiry, R. N., El-Naggar, M. R., Eissa, M., Hassan, A. M. A., Bar, W. A., Mongy, T., Osman, M., Hassan, A., Nabawy, B. S., & Rayan, A. M. (2024). Neutron imaging of moisture transport, water absorption characteristics and strength properties for fly ash/slag blended geopolymer mortars: Effect of drying temperature. Construction and Building Materials, 449, 138436. doi:10.1016/j.conbuildmat.2024.138436.
[31] Irum, S., & Shabbir, F. (2024). Performance of fly ash/GGBFS based geopolymer concrete with recycled fine and coarse aggregates at hot and ambient curing. Journal of Building Engineering, 95, 110148. doi:10.1016/j.jobe.2024.110148.
[32] Cheah, C. B., Tan, L. E., & Ramli, M. (2021). Recent advances in slag-based binder and chemical activators derived from industrial by-products – A review. Construction and Building Materials, 272, 121657. doi:10.1016/j.conbuildmat.2020.121657.
[33] Marathe, S., Sheshadri, A., & Sadowski, Š. (2024). Agro-industrial waste utilization in air-cured alkali-activated pavement composites: Properties, micro-structural insights and life cycle impacts. Cleaner Materials, 14, 100281. doi:10.1016/j.clema.2024.100281.
[34] Tejas, S., & Pasla, D. (2024). Influence of agricultural waste ash on the mechanical strength of alkali-activated slag recycled aggregate concrete from a microstructural perspective. Innovative Infrastructure Solutions, 9(8), 335. doi:10.1007/s41062-024-01651-x.
[35] Xiaoshuang, S., Yanpeng, S., Jinqian, L., Yuhao, Z., & Ruihan, H. (2024). Preparation and performance optimization of fly ash- slag- red mud based geopolymer mortar: Simplex-centroid experimental design method. Construction and Building Materials, 450, 138573. doi:10.1016/j.conbuildmat.2024.138573.
[36] Huang, X., Tian, Y., Jiang, J., Lu, X., He, Z., & Jia, K. (2024). Mechanical properties and enhancement mechanism of iron ore tailings as aggregate for manufacturing ultra-high performance geopolymer concrete. Construction and Building Materials, 439, 137362. doi:10.1016/j.conbuildmat.2024.137362.
[37] Uğurlu, A. İ., Karakoç, M. B., & Özcan, A. (2021). Effect of binder content and recycled concrete aggregate on freeze-thaw and sulfate resistance of GGBFS based geopolymer concretes. Construction and Building Materials, 301, 124246. doi:10.1016/j.conbuildmat.2021.124246.
[38] Reddy, R.K., Yaragal, S. C., & Sagar Srinivasa, A. (2023). One-part eco-friendly alkali-activated concrete – An innovative sustainable alternative. Construction and Building Materials, 408, 133741. doi:10.1016/j.conbuildmat.2023.133741.
[39] Udhaya Kumar, T., & Vinod Kumar, M. (2020). Investigation on mechanical properties of geopolymer aggregate concrete. Materials Today: Proceedings, 43, 1220–1225. doi:10.1016/j.matpr.2020.08.758.
[40] Nikmehr, B., Kafle, B., & Al-Ameri, R. (2024). A review of the advanced treatment techniques for enriching the recycled concrete aggregates for recycled-based concrete: economic, environmental and technical analysis. Smart and Sustainable Built Environment, 13(3), 560–583. doi:10.1108/SASBE-11-2022-0243.
[41] Hassani, A., & Kazemian, F. (2024). Investigating geopolymer mortar incorporating industrial waste using response surface methodology: A sustainable approach for construction materials. Case Studies in Construction Materials, 21, 3609. doi:10.1016/j.cscm.2024.e03609.
[42] Shahid, M. J., Khan, H. A., Khan, M. Z. N., Ahmad, J., & Abdullah, M. (2024). Optimization of an alkali activator solution to enhance the performance of roller-compacted concrete for pavements (RCCP). International Journal of Pavement Engineering, 25(1), 2318609. doi:10.1080/10298436.2024.2318609.
[43] Kumar, C. B. (2022). Performance Evaluation of Ferrochrome ASH Based Alkali Activated Slag Mortars. Ph.D. Thesis, National Institute of Technology Karnataka, Mangaluru, India.
[44] ASTM C33/C33M-18. Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.
[45] ASTM C150/C150M-19. (2019). Standard Specification for Portland Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0150_C0150M-19.
[46] ASTM C1602/C1602M-22. (2022). Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C1602_C1602M-22.
[47] ASTM C191-21. (2021). Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle. ASTM International, Pennsylvania, United States. doi:10.1520/C0191-21.
[48] ASTM C1437-20. (2020). Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM International, Pennsylvania, United States. doi:10.1520/C1437-20.
[49] ASTM C109/C109M-20. (2020). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, Pennsylvania, United States. doi:10.1520/C0109_C0109M-20.
[50] ASTM C1709-18. (2023). Standard Guide for Evaluation of Alternative Supplementary Cementitious Materials (ASCM) for Use in Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C1709-18.
[51] BS EN 1015. (2019). Methods of test for mortar for masonry - Determination of flexural and compressive strength of hardened mortar. British Standard Institute (BSI), London, United Kingdom.
[52] Anju, M. J., Beulah, M., & Varghese, A. (2024). Review of Geopolymer Composites Synthesized Using Different Industrial By-products. International Journal of Pavement Research and Technology. doi:10.1007/s42947-024-00446-8.
[53] Poletanovic, B., Kopecsko, K., & Merta, I. (2024). Fibre hornification improves the long-term properties of hemp fibre-reinforced fly ash-based geopolymer mortar. Construction and Building Materials, 446, 137957. doi:10.1016/j.conbuildmat.2024.137957.
[54] Singh, R. P., Vanapalli, K. R., Jadda, K., & Mohanty, B. (2024). Durability assessment of fly ash, GGBS, and silica fume based geopolymer concrete with recycled aggregates against acid and sulfate attack. Journal of Building Engineering, 82, 108354. doi:10.1016/j.jobe.2023.108354.
[55] Rahman, S. S., & Khattak, M. J. (2023). Feasibility of Reclaimed Asphalt Pavement Geopolymer Concrete as a Pavement Construction Material. International Journal of Pavement Research and Technology, 16(4), 888–907. doi:10.1007/s42947-022-00169-8.
[56] Walkley, B., Ke, X., Hussein, O. H., Bernal, S. A., & Provis, J. L. (2020). Incorporation of strontium and calcium in geopolymer gels. Journal of Hazardous Materials, 382, 121015. doi:10.1016/j.jhazmat.2019.121015.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
