Engineering and Microstructure Properties of Soft Clay Improved with Ordinary Portland Cement and Polymers
Abstract
Doi: 10.28991/CEJ-2025-011-04-022
Full Text: PDF
Keywords
References
Suksiripattanapong, C., Horpibulsuk, S., Yeanyong, C., & Arulrajah, A. (2021). Evaluation of polyvinyl alcohol and high calcium fly ash based geopolymer for the improvement of soft Bangkok clay. Transportation Geotechnics, 27, 100476. doi:10.1016/j.trgeo.2020.100476.
Suksiripattanapong, C., Sakdinakorn, R., Tiyasangthong, S., Wonglakorn, N., Phetchuay, C., & Tabyang, W. (2022). Properties of soft Bangkok clay stabilized with cement and fly ash geopolymer for deep mixing application. Case Studies in Construction Materials, 16, 1081. doi:10.1016/j.cscm.2022.e01081.
Güllü, H., Al Nuaimi, M. M., & Aytek, A. (2021). Rheological and strength performances of cold-bonded geopolymer made from limestone dust and bottom ash for grouting and deep mixing. Bulletin of Engineering Geology and the Environment, 80, 1103-1123. doi:10.1007/s10064-020-01998-2.
Novikov, M. B., Roos, A., Creton, C., & Feldstein, M. M. (2003). Dynamic mechanical and tensile properties of poly(N-vinyl pyrrolidone)-poly (ethylene glycol) blends. Polymer, 44(12), 3561–3578. doi:10.1016/S0032-3861(03)00132-0.
Cao, Y., Zhang, J., Xu, G., Li, M., & Bian, X. (2022). Strength Properties and Prediction Model of Cement-Solidified Clay Considering Organic Matter and Curing Temperature. Frontiers in Materials, 9, 965975. doi:10.3389/fmats.2022.965975.
Phojan, W., Luepongpattana, S., Wonglakorn, N., Thumrongvut, J., Tabyang, W., Keawsawasvong, S., & Suksiripattanapong, C. (2023). Mechanical and environmental characteristics of high calcium fly ash geopolymer stabilized soft Bangkok clay contaminated with zinc sludge. Case Studies in Chemical and Environmental Engineering, 8, 100480. doi:10.1016/j.cscee.2023.100480.
Tesanasin, T., Suksiripattanapong, C., Kuasakul, T., Thongkhwan, T., Tabyang, W., Thumrongvut, J., & Keawsawasvong, S. (2024). Comparison Between Cement-Rice Husk Ash and Cement-Rice Husk Ash One-Part Geopolymer for Stabilized Soft Clay as Deep Mixing Material. Transportation Infrastructure Geotechnology, 11(4), 1760–1776. doi:10.1007/s40515-023-00345-8.
Vichan, S., & Rachan, R. (2013). Chemical stabilization of soft Bangkok clay using the blend of calcium carbide residue and biomass ash. Soils and Foundations, 53(2), 272–281. doi:10.1016/j.sandf.2013.02.007.
Al-Dalain, N. A. W., Ezreig, A. M. A., & Ismail, M. A. M. (2024). Numerical Analysis of Time-Dependent Strength and Stiffness in Palm Oil Fuel Ash-Stabilized Soil: Early and Long-Term Effects. Civil Engineering Journal (Iran), 10(Special Issue), 62–81. doi:10.28991/CEJ-SP2024-010-05.
Alam, S., & Alselami, N. A. (2024). Geotechnical Properties of Fly Ash Blended Expansive Soil: A Review. Civil Engineering Journal (Iran), 10(Special Issue), 82–103. doi:10.28991/CEJ-SP2024-010-06.
Nugroho, S. A., Retno Wardani, S. P., Muntohar, A. S., & Satibi, S. (2024). Effect of Coal Combustion Waste on Cement-Treated Clay. Civil Engineering Journal (Iran), 10(11), 3603–3612. doi:10.28991/CEJ-2024-010-11-010.
Liu, L., Zhou, A., Deng, Y., Cui, Y., Yu, Z., & Yu, C. (2019). Strength performance of cement/slag-based stabilized soft clays. Construction and Building Materials, 211, 909–918. doi:10.1016/j.conbuildmat.2019.03.256.
Huang, K., Fang, Z., Cai, G., Shi, X., Huang, K., He, Y., Duan, W., & Tian, N. (2024). Macro and microscopic characteristics of soft soil stabilized by Portland cement-soda residue under dry-wet cycling. Construction and Building Materials, 428, 136347. doi:10.1016/j.conbuildmat.2024.136347.
Bayesteh, H., & Hezareh, H. (2023). Behavior of cement-stabilized marine clay and pure clay minerals exposed to high salinity grout. Construction and Building Materials, 383, 131334. doi:10.1016/j.conbuildmat.2023.131334.
Xu, M., Liu, L., Deng, Y., Zhou, A., Gu, S., & Ding, J. (2021). Influence of sand incorporation on unconfined compression strength of cement-based stabilized soft clay. Soils and Foundations, 61(4), 1132–1141. doi:10.1016/j.sandf.2021.06.008.
Wu, J., Liu, L., Deng, Y., Zhang, G., Zhou, A., & Xiao, H. (2022). Use of recycled gypsum in the cement-based stabilization of very soft clays and its micro-mechanism. Journal of Rock Mechanics and Geotechnical Engineering, 14(3), 909–921. doi:10.1016/j.jrmge.2021.10.002.
Wu, J., Liu, S., Deng, Y., Zhang, G., & Zhan, L. (2022). Microscopic phase identification of cement-stabilized clay by nanoindentation and statistical analytics. Applied Clay Science, 224, 106531. doi:10.1016/j.clay.2022.106531.
Horpibulsk, S., Rachan, R., Suddeepong, A., & Chinkulkijniwat, A. (2011). Strength development in cement admixed Bangkok clay: Laboratory and field investigations. Soils and Foundations, 51(2), 239–251. doi:10.3208/sandf.51.239.
Jiang, N., Wang, C., Wang, Z., Li, B., & Liu, Y. A. (2021). Strength characteristics and microstructure of cement stabilized soft soil admixed with silica fume. Materials, 14(8), 1929. doi:10.3390/ma14081929.
El-Feky, M. S., Badawy, A. H., Youssef, P., & Kohail, M. (2024). Utilizing industrial byproducts for the manufacture of clay-cellulose nanocomposite cements with enhanced sustainability. Scientific Reports, 14(1), 751. doi:10.1038/s41598-023-51130-z.
Suksiripattanapong, C., Krosoongnern, K., Thumrongvut, J., Sukontasukkul, P., Horpibulsuk, S., & Chindaprasirt, P. (2020). Properties of cellular lightweight high calcium bottom ash-portland cement geopolymer mortar. Case Studies in Construction Materials, 12, 337. doi:10.1016/j.cscm.2020.e00337.
Nodehi, M., & Taghvaee, V. M. (2022). Alkali-activated materials and geopolymer: a review of common precursors and activators addressing circular economy. Circular Economy and Sustainability, 2(1), 165-196. doi:10.1007/s43615-021-00029-w.
Somna, R., Khamput, P., & Somna, K. (2024). Geopolymer Paving Blocks Made From Fly Ash and Bagasse Ash Under Different Curing Conditions. Chiang Mai Journal of Science, 51(3), 2024041. doi:10.12982/CMJS.2024.041.
Ayeldeen, M., & Kitazume, M. (2017). Using fiber and liquid polymer to improve the behaviour of cement-stabilized soft clay. Geotextiles and Geomembranes, 45(6), 592–602. doi:10.1016/j.geotexmem.2017.05.005.
Mirzababaei, M., Arulrajah, A., & Ouston, M. (2017). Polymers for Stabilization of Soft Clay Soils. Procedia Engineering, 189, 25–32. doi:10.1016/j.proeng.2017.05.005.
Huang, J., Kogbara, R. B., Hariharan, N., Masad, E. A., & Little, D. N. (2021). A state-of-the-art review of polymers used in soil stabilization. Construction and Building Materials, 305, 124685. doi:10.1016/j.conbuildmat.2021.124685.
Mirzababaei, M., Yasrobi, S., & Al-Rawas, A. (2009). Effect of polymers on swelling potential of expansive soils. Proceedings of the Institution of Civil Engineers: Ground Improvement, 162(3), 111–119. doi:10.1680/grim.2009.162.3.111.
Mirzababaei, M., Arulrajah, A., Horpibulsuk, S., Soltani, A., & Khayat, N. (2018). Stabilization of soft clay using short fibers and poly vinyl alcohol. Geotextiles and Geomembranes, 46(5), 646–655. doi:10.1016/j.geotexmem.2018.05.001.
Allahverdi, A., Kianpur, K., & Moghbeli, M. R. (2010). Effect of polyvinyl alcohol on flexural strength and some important physical properties of Portland cement paste. Iranian Journal of Materials Science and Engineering, 7(1), 1–6.
de Melo Fiori, A. P. S., Camani, P. H., dos Santos Rosa, D., & Carastan, D. J. (2019). Combined effects of clay minerals and polyethylene glycol in the mechanical and water barrier properties of carboxymethylcellulose films. Industrial Crops and Products, 140, 111644. doi:10.1016/j.indcrop.2019.111644.
Tanaka, H., Locat, J., Shibuya, S., Soon, T. T., & Shiwakoti, D. R. (2001). Characterization of Singapore, Bangkok, and Ariake clays. Canadian Geotechnical Journal, 38(2), 378–400. doi:10.1139/t00-106.
Yang, L., Chen, M., Liang, C., Lu, L., Zhao, P., Wu, F., Xu, J., & Huang, Y. (2022). Improvement in the anti-corrosion property of marine concrete using layered double hydroxides and polyvinylpyrrolidone. Applied Clay Science, 216. doi:10.1016/j.clay.2021.106385.
Azzam, W. R. (2014). Behavior of modified clay microstructure using polymer nanocomposites technique. Alexandria Engineering Journal, 53(1), 143–150. doi:10.1016/j.aej.2013.11.010.
Suksiripattanapong, C., Jenpiyapong, K., Tiyasangthong, S., Krittacom, B., Phetchuay, C., & Tabyang, W. (2022). Mechanical and thermal properties of lateritic soil mixed with cement and polymers as a non-bearing masonry unit. Case Studies in Construction Materials, 16, 962. doi:10.1016/j.cscm.2022.e00962.
Subramanian, U. M., Kumar, S. V., Nagiah, N., & Sivagnanam, U. T. (2014). Fabrication of polyvinyl alcohol-polyvinylpyrrolidone blend scaffolds via electrospinning for tissue engineering applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 63(9), 476–485. doi:10.1080/00914037.2013.854216.
Jerome, F. S., Tseng, J. T., & Fan, L. T. (1968). Viscosities of Aqueous Glycol Solutions. Journal of Chemical and Engineering Data, 13(4), 496. doi:10.1021/je60039a010.
Suksiripattanapong, C., Horpibulsuk, S., Chanprasert, P., Sukmak, P., & Arulrajah, A. (2015). Compressive strength development in fly ash geopolymer masonry units manufactured from water treatment sludge. Construction and Building Materials, 82, 20–30. doi:10.1016/j.conbuildmat.2015.02.040.
Feldstein, M. M. (2001). Peculiarities of glass transition temperature relation to the composition of poly (N-vinyl pyrrolidone) blends with short chain poly (ethylene glycol). Polymer, 42(18), 7719-7726. doi:10.1016/S0032-3861(01)00225-7.
D.O.H. (2007). Manual of Highway Construction. Department of Highways, Bangkok, Thailand.
Yu, Y.-H., Lin, C.-Y., Yeh, J.-M., & Lin, W.-H. Preparation and properties of poly (vinyl alcohol) – clay nanocomposite materials. Polymer, 44, 3553–3560.
Saberian, M., & Li, J. (2018). Investigation of the mechanical properties and carbonation of construction and demolition materials together with rubber. Journal of Cleaner Production, 202, 553–560. doi:10.1016/j.jclepro.2018.08.183.
Teng, C., Qiao, J., Wang, J., Jiang, L., & Zhu, Y. (2016). Hierarchical layered heterogeneous graphene-poly(N-isopropylacrylamide)-clay hydrogels with superior modulus, strength, and toughness. ACS Nano, 10(1), 413–420. doi:10.1021/acsnano.5b05120.
Horpibulsuk, S., Miura, N., & Nagaraj, T. S. (2003). Assessment of strength development in cement-admixed high water content clays with Abrams’ law as a basis. Geotechnique, 53(4), 439–444. doi:10.1680/geot.2003.53.4.439.
Wang, Y., Zhou, W., Li, Y., Liang, L., Xie, G., & Peng, Y. (2021). The role of polyvinylpyrrolidone in the selective separation of coal from quartz and kaolinite minerals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 626, 126948. doi:10.1016/j.colsurfa.2021.126948.
DOI: 10.28991/CEJ-2025-011-04-022
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Cherdsak Suksiripattanapong

This work is licensed under a Creative Commons Attribution 4.0 International License.