Treatment of Industrial Wastewater of Variable Quality Using Ultrasound Irradiation
Abstract
Doi: 10.28991/CEJ-2025-011-04-013
Full Text: PDF
Keywords
References
Ahmed, M. E., Al-Haddad, A., Mydlarczyk, A., & Aba, A. (2019). The Presence and Distribution of Radioactivity and Radionuclides in Kuwait Wastewater Treatment Plants. Arabian Journal for Science and Engineering, 44(10), 8779–8786. doi:10.1007/s13369-019-04076-2.
Al-Matouq, A., Ahmed, M. E., Khajah, M., & Al-Yaseen, R. (2024). Assessment of seasonal variations of volatile organic compounds in raw and treated wastewater in Kuwait. Desalination and Water Treatment, 318, 100377. doi:10.1016/j.dwt.2024.100377.
NRC. (2012). Water Reuse: Potential for Expanding the Nation’s Water Supply Through Reuse of Municipal Wastewater. National Research Council: Committee on the Assessment of Water Reuse as an Approach to Meeting Future Water Supply Needs. National Academies Press, Washington, D.C., United States.
Bartram, J., Baum, R., Coclanis, P. A., Gute, D. M., Kay, D., McFadyen, S., Pond, K., Robertson, W., & Rouse, M. J. (2015). Routledge handbook of water and health. Routledge Handbook of Water and Health. Routledge, New Jersey, United States. doi:10.4324/9781315693606.
Kobayashi, D., & Matsumoto, H. (2019). Kinetics analysis for development of a rate constant estimation model for ultrasonic degradation reaction in the presence of particles. Chemical Engineering Transactions, 74, 571–576. doi:10.3303/CET1974096.
Nasseri, S., Vaezi, F., Mahvi, A., Nabizadeh, R., & Haddadi, S. (2006). Determination of the ultrasonic effectiveness in advanced wastewater treatment. Journal of Environmental Health Science & Engineering, 3(2), 109–116.
Al-Juboori, R., & Bowtell, L. (2020). Ultrasound Technology Integration into Drinking Water Treatment Train. Sonochemical Reactions. IntechOpen, Rijeka, Croatia. doi:10.5772/intechopen.88124.
Kobayashi, D., Honma, C., Matsumoto, H., Takahashi, T., Shimada, Y., Kuroda, C., Otake, K., & Shono, A. (2014). Effects of ultrasonic frequency and initial concentration on degradation of methylene blue. Japanese Journal of Applied Physics, 53(7 SPEC. ISSUE), 3. doi:10.7567/JJAP.53.07KE03.
Dehghani, M. H., Mahvi, A. H., Najafpoor, A. A., & Azam, K. (2007). Investigating the potential of using acoustic frequency on the degradation of linear alkylbenzen sulfonates from aqueous solution. Journal of Zhejiang University: Science A, 8(9), 1462–1468. doi:10.1631/jzus.2007.A1462.
Ayyildiz, O., Peters, R. W., & Anderson, P. R. (2007). Sonolytic degradation of halogenated organic compounds in groundwater: Mass transfer effects. Ultrasonics Sonochemistry, 14(2), 163–172. doi:10.1016/j.ultsonch.2006.04.004.
Maleki, A., Mahvi, A. H., Mesdaghinia, A., & Naddafi, K. (2007). Degradation and toxicity reduction of phenol by ultrasound waves. Bulletin of the Chemical Society of Ethiopia, 21(1), 33–38. doi:10.4314/bcse.v21i1.61368.
Mahvi, A. H., . M. H. D., & . F. V. (2005). Ultrasonic Technology Effectiveness in Total Coliforms Disinfection of Water. Journal of Applied Sciences, 5(5), 856–858. doi:10.3923/jas.2005.856.858.
Mahvi, A. H. (2009). Application of ultrasonic technology for water and wastewater treatment. Iranian Journal of Public Health, 38(2), 1–17.
Yadav N, K. R. (2014). Effect of Two Waves of Ultrasonic on Waste Water Treatment. Journal of Chemical Engineering & Process Technology, 5(3), 1. doi:10.4172/2157-7048.1000193.
Wang, N., Li, L., Wang, K., Huang, X., Han, Y., Ma, X., Wang, M., Lv, X., & Bai, X. (2023). Study and Application Status of Ultrasound in Organic Wastewater Treatment. Sustainability (Switzerland), 15(21), 15524. doi:10.3390/su152115524.
Ang, W. L., McHugh, P. J., & Symes, M. D. (2022). Sonoelectrochemical processes for the degradation of persistent organic pollutants. Chemical Engineering Journal, 444, 136573. doi:10.1016/j.cej.2022.136573.
Son, Y. (2016). Advanced oxidation processes using ultrasound technology for water and wastewater treatment. Handbook of Ultrasonics and Sonochemistry, 711–732. doi:10.1007/978-981-287-278-4_53.
Wu, T. Y., Guo, N., Teh, C. Y., & Hay, J. X. W. (2013). Applications of Ultrasound Technology in Environmental Remediation. Advances in Ultrasound Technology for Environmental Remediation, 13–93. doi:10.1007/978-94-007-5533-8_3.
Mahamuni, N. N., & Adewuyi, Y. G. (2010). Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrasonics Sonochemistry, 17(6), 990–1003. doi:10.1016/j.ultsonch.2009.09.005.
Peters, D. (2001). Sonolytic degradation of volatile pollutants in natural ground water: Conclusions from a model study. Ultrasonics Sonochemistry, 8(3), 221–226. doi:10.1016/S1350-4177(01)00080-3.
Ghosh, S., & Sahu, M. (2024). Ultrasound for the degradation of endocrine disrupting compounds in aqueous solution: A review on mechanisms, influence of operating parameters and cost estimation. Chemosphere, 349, 140864. doi:10.1016/j.chemosphere.2023.140864.
Yang, N., Jun, B. M., Choi, J. S., Park, C. M., Jang, M., Son, A., Nam, S. N., & Yoon, Y. (2024). Ultrasonic treatment of dye chemicals in wastewater: A review. Chemosphere, 354, 141676. doi:10.1016/j.chemosphere.2024.141676.
Flndlk, S. (2018). Treatment of petroleum refinery effluent using ultrasonic irradiation. Polish Journal of Chemical Technology, 20(4), 20–25. doi:10.2478/pjct-2018-0049.
Gogate, P. R., & Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions. Advances in Environmental Research, 8(3–4), 501–551. doi:10.1016/S1093-0191(03)00032-7.
Elgarahy, A. M., Eloffy, M. G., Priya, A. K., Yogeshwaran, V., Elwakeel, K. Z., Yang, Z., & Lopez-Maldonado, E. A. (2024). A review on the synergistic efficacy of sonication-assisted water treatment process with special attention given to microplastics. Chemical Engineering Research and Design, 206, 524–552. doi:10.1016/j.cherd.2024.05.027.
Sponza, D. T., & Oztekin, R. (2010). Destruction of some more and less hydrophobic PAHs and their toxicities in a petrochemical industry wastewater with sonication in Turkey. Bioresource Technology, 101(22), 8639–8648. doi:10.1016/j.biortech.2010.06.124.
Lakshmi, N. J., Surabhi, P., Gogate, P. R., & Pandit, A. B. (2024). Treatment of Bio-Refractory Real Effluent from Polymer Processing Industry Using Cavitation-Based Hybrid Treatment Techniques. Arabian Journal for Science and Engineering, 49(6), 7893–7912. doi:10.1007/s13369-023-08478-1.
Baştürk, E. (2024). UV- and US-Based Oxidation of a Triazine Azo Dye (Reactive Red 120): Operational Parameters, Kinetics, Water Matrix Effect, Predominant Radicals, and Energy Efficiency. Arabian Journal for Science and Engineering, 49(6), 7829–7849. doi:10.1007/s13369-023-08479-0.
Pakhale, V. D., & Gogate, P. R. (2021). Removal of Rhodamine 6G from Industrial Wastewater Using Combination Approach of Adsorption Followed by Sonication. Arabian Journal for Science and Engineering, 46(7), 6473–6484. doi:10.1007/s13369-020-05074-5.
Sivakumar, M., & Pandit, A. B. (2002). Wastewater treatment: A novel energy efficient hydrodynamic cavitational technique. Ultrasonics Sonochemistry, 9(3), 123–131. doi:10.1016/S1350-4177(01)00122-5.
Moholkar, V. S., Rekveld, S., & Warmoeskerken, M. M. C. G. (2000). Modeling of the acoustic pressure fields and the distribution of the cavitation phenomena in a dual frequency sonic processor. Ultrasonics, 38(1), 666–670. doi:10.1016/S0041-624X(99)00204-8.
Vergara, L., Nickel, K., & Neis, U. (2012). Optimisation of Assets by Ultrasound to Achieve Lowest Operational Costs. 6th European Waste Water Management Conference & Exhibition, 1–18.
Cetinkaya, S. G., Morcali, M. H., Akarsu, S., Ziba, C. A., & Dolaz, M. (2018). Comparison of classic Fenton with ultrasound Fenton processes on industrial textile wastewater. Sustainable Environment Research, 28(4), 165–170. doi:10.1016/j.serj.2018.02.001.
APHA. (2005). Standard methods for the examination of water and wastewater. American Public Health Association, Washington, D.C., United States.
Oliveira, J. F. de, Fia, R., Fia, F. R. L., Rodrigues, F. N., Matos, M. P. de, & Siniscalchi, L. A. B. (2020). Principal component analysis as a criterion for monitoring variable organic load of swine wastewater in integrated biological reactors UASB, SABF and HSSF-CW. Journal of Environmental Management, 262, 110386. doi:10.1016/j.jenvman.2020.110386.
Tang, Z., Liu, M., Yi, L., Guo, H., Ouyang, T., Yin, H., & Li, M. (2019). Source apportionment and health risk assessment of heavy metals in Eastern Guangdong municipal solid waste. Applied Sciences (Switzerland), 9(22), 4755. doi:10.3390/app9224755.
Wang, J., Wang, Z., Vieira, C. L. Z., Wolfson, J. M., Pingtian, G., & Huang, S. (2019). Review on the treatment of organic pollutants in water by ultrasonic technology. Ultrasonics Sonochemistry, 55, 273–278. doi:10.1016/j.ultsonch.2019.01.017.
Zhou, X., Zhou, X., Wang, C., & Zhou, H. (2023). Environmental and human health impacts of volatile organic compounds: A perspective review. Chemosphere, 313, 137489. doi:10.1016/j.chemosphere.2022.137489.
David, E., & Niculescu, V. C. (2021). Volatile organic compounds (Vocs) as environmental pollutants: Occurrence and mitigation using nanomaterials. International Journal of Environmental Research and Public Health, 18(24), 13147. doi:10.3390/ijerph182413147.
Wang, M., Ateia, M., Awfa, D., & Yoshimura, C. (2021). Regrowth of bacteria after light-based disinfection — What we know and where we go from here. Chemosphere, 268, 128850. doi:10.1016/j.chemosphere.2020.128850.
Collivignarelli, M. C., Abbà, A., Benigna, I., Sorlini, S., & Torretta, V. (2018). Overview of the main disinfection processes for wastewater and drinking water treatment plants. Sustainability (Switzerland), 10(1), 86. doi:10.3390/su10010086.
Suslick, K. S., Mdleleni, M. M., & Ries, J. T. (1997). Chemistry induced by hydrodynamic cavitation. Journal of the American Chemical Society, 119(39), 9303–9304. doi:10.1021/ja972171i.
Patidar, R., & Srivastava, V. C. (2020). Mechanistic insight into ultrasound-induced enhancement of electrochemical oxidation of ofloxacin: Multi-response optimization and cost analysis. Chemosphere, 257, 127121. doi:10.1016/j.chemosphere.2020.127121.
Tran, N., Drogui, P., Brar, S. K., & De Coninck, A. (2017). Synergistic effects of ultrasounds in the sonoelectrochemical oxidation of pharmaceutical carbamazepine pollutant. Ultrasonics Sonochemistry, 34, 380–388. doi:10.1016/j.ultsonch.2016.06.014.
Yin, C., Ye, T., Yu, Y., Li, W., & Ren, Q. (2019). Detection of hydroxyl radicals in sonoelectrochemical system. Microchemical Journal, 144, 369–376. doi:10.1016/j.microc.2018.09.025.
Gujar, S. K., Gogate, P. R., Kanthale, P., Pandey, R., Thakre, S., & Agrawal, M. (2021). Combined oxidation processes based on ultrasound, hydrodynamic cavitation and chemical oxidants for treatment of real industrial wastewater from cellulosic fiber manufacturing sector. Separation and Purification Technology, 257, 117888. doi:10.1016/j.seppur.2020.117888.
Wen, H., Cheng, D., Chen, Y., Yue, W., & Zhang, Z. (2024). Review on ultrasonic technology enhanced biological treatment of wastewater. Science of the Total Environment, 925, 171260. doi:10.1016/j.scitotenv.2024.171260.
Shi, H., Wang, Q., Ni, J., Xu, Y., Song, N., & Gao, M. (2020). Highly efficient removal of amoxicillin from water by three-dimensional electrode system within granular activated carbon as particle electrode. Journal of Water Process Engineering, 38, 101656. doi:10.1016/j.jwpe.2020.101656.
Patidar, R., & Srivastava, V. C. (2022). Ultrasound-assisted electrochemical treatment of cosmetic industry wastewater: Mechanistic and detoxification analysis. Journal of Hazardous Materials, 422, 126842. doi:10.1016/j.jhazmat.2021.126842.
Mortezazadeh, F., Nejatzadeh, F., Eslamifar, M., & Gholami-Borujeni, F. (2024). Enhancing Disinfection Efficiency of Wastewater Treatment Plant Effluent: The Role of ZnO Nanoparticles in Ultrasonic and UV-C Processes. Nano, 19(2), 2350100. doi:10.1142/S179329202350100X.
Thokchom, B., Qiu, P., Cui, M., Park, B., Pandit, A. B., & Khim, J. (2017). Magnetic Pd@Fe3O4 composite nanostructure as recoverable catalyst for sonoelectrohybrid degradation of Ibuprofen. Ultrasonics Sonochemistry, 34, 262–272. doi:10.1016/j.ultsonch.2016.05.030.
Dominguez, C. M., Oturan, N., Romero, A., Santos, A., & Oturan, M. A. (2018). Lindane degradation by electrooxidation process: Effect of electrode materials on oxidation and mineralization kinetics. Water Research, 135, 220–230. doi:10.1016/j.watres.2018.02.037.
Gibson, J. H., Hon, H., Farnood, R., Droppo, I. G., & Seto, P. (2009). Effects of ultrasound on suspended particles in municipal wastewater. Water Research, 43(8), 2251–2259. doi:10.1016/j.watres.2009.02.024.
Yadav, M., Gole, V. L., Sharma, J., & Yadav, R. K. (2022). Biologically treated industrial wastewater disinfection using the synergy of low-frequency ultrasound and H2O2/O3. Journal of Environmental Health Science and Engineering, 20(2), 889–898. doi:10.1007/s40201-022-00829-8.
Lazarotto, J. S., Júnior, E. P. M., Medeiros, R. C., Volpatto, F., & Silvestri, S. (2022). Sanitary sewage disinfection with ultraviolet radiation and ultrasound. International Journal of Environmental Science and Technology, 19(11), 11531–11538. doi:10.1007/s13762-021-03764-7.
Naddeo, V., Cesaro, A., Mantzavinos, D., Fatta-Kassinos, D., & Belgiorno, V. (2014). Water and wastewater disinfection by ultrasound irradiation-a critical review. Global Nest Journal, 16(3), 561–577. doi:10.30955/gnj.001350.
Vázquez-López, M., Amabilis-Sosa, L. E., Moeller-Chávez, G. E., Roé-Sosa, A., Neumann, P., & Vidal, G. (2019). Evaluation of the ultrasound effect on treated municipal wastewater. Environmental Technology (United Kingdom), 40(27), 3568–3577. doi:10.1080/09593330.2018.1481889.
DOI: 10.28991/CEJ-2025-011-04-013
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Mohd Elmuntasir Ahmed, Mishari Khajah, Hussain Abdullah, Rashed Al-Yaseen

This work is licensed under a Creative Commons Attribution 4.0 International License.