Cluster-Driven Predictive Model for Asphalt Pavement Maximum Temperature in Tropical Airport

Pebri Herry, Ade Sjafruddin, Bambang S. Subagio, Eri S. Hariyadi

Abstract


The majority of runways are constructed using flexible pavement surfaced with Hot Mix Asphalt (HMA). The performance of these materials is significantly influenced by temperature due to their viscoelastic nature. Understanding the maximum temperature profile in the HMA layer is essential for evaluating pavement load-bearing capacity and durability. Therefore, this study aimed to present a robust model for predicting maximum pavement temperature distributions based on direct measurements from 13 strategically selected airports in the tropical region of Indonesia. Data was collected using the Airside Pavement Sensing System (AirPaSS), a monitoring device that integrated solar-powered energy management, automated data transmission, and multi-depth thermocouple sensors, providing real-time and accurate temperature measurements. By using hierarchical clustering, airports were categorized into three clusters based on air temperature, pavement temperature, and elevation, enabling precise and cluster-specific material design. The result showed that the predictive model incorporating linear and logarithmic regression achieved high accuracy, with Root Mean Squared Error (RMSE) values ranging from 0.91°C to 2.01°C and Adjusted R² values between 0.76-0.91. This model offered a practical solution for predicting HMA layer temperature at any depth. The results provided valuable information for performance-based grading systems with significant implications for improving infrastructure resilience in tropical and similar climatic regions.

 

Doi: 10.28991/CEJ-2025-011-03-01

Full Text: PDF


Keywords


Airport Pavement; Pavement Temperature; Temperature Prediction Model; AirPaSS.

References


Al-Suleiman, T. I., Basma, A. A., & Ksaibati, K. (1993). Examination of pure environmental effects on pavement condition. Transportation Research Record, 1388, 52–59.

Sulejmani, P., Said, S., Agardh, S., & Ahmed, A. (2021). Impact of temperature and moisture on the tensile strain of asphalt concrete layers. International Journal of Pavement Engineering, 22(13), 1711–1719. doi:10.1080/10298436.2020.1715404.

Ebrahim Abu El-Maaty, A. (2017). Temperature Change Implications for Flexible Pavement Performance and Life. International Journal of Transportation Engineering and Technology, 3(1), 11. doi:10.11648/j.ijtet.20170301.11.

Losa, M., Bacci, R., & Leandri, P. (2008). A statistical model for prediction of critical strains in pavements from deflection measurements. Road Materials and Pavement Design, 9(Sup 1), 373–396. doi:10.1080/14680629.2008.9690175.

Lukanen, E. O., Stubstad, R., Briggs, R. C., & Intertec, B. (2000). Temperature predictions and adjustment factors for asphalt pavement (No. FHWA-RD-98-085; DBNX94822-D; NTIS-PB2000107444). Turner-Fairbank Highway Research Center, McLean, United States.

Marshall, C., Meier, R., & Welch, M. (2001). Seasonal temperature effects on flexible pavements in Tennessee. Transportation Research Record, 1764, 89–96. doi:10.3141/1764-10.

Wibowo, A., Subagio, B. S., Rahman, H., & Frazila, and R. B. (2024). Evaluation of the Airport Pavement Condition Index in the Aircraft Lateral Wander Area. International Journal of GEOMATE, 27(122), 87–95. doi:10.21660/2024.122.g13151.

Ntramah, S., Tutu, K. A., Tuffour, Y. A., Adams, C. A., & Adanu, E. K. (2023). Evaluation of Selected Empirical Models for Asphalt Pavement Temperature Prediction in a Tropical Climate: The Case of Ghana. Sustainability, 15(22), 15846. doi:10.3390/su152215846.

Direktorat Jenderal Bina Marga. (2024). Road Pavement Design Manual. No. 03/M/BM/2024. Direktorat Jenderal Bina Marga, Jakarta, Indonesia. (In Indonesian).

Akbulut, H., Atilgan Gevrek, L., & Ay, M. (2024). Modeling of Asphalt Pavement Surface Temperature for Prevention of Icing on the Surface. Turkish Journal of Civil Engineering, 35(2), 1–21. doi:10.18400/tjce.1211542.

Herry, P., Subagio, B. S., Hariyadi, E. S., & Wibowo, S. S. (2024). Integrating Regional Pavement Temperature into Simplified Material Characterization for Airport Pavement Rating. International Journal of GEOMATE, 27(120), 85–95. doi:10.21660/2024.120.g13162.

Sun, L. (2016). Structural Behavior of Asphalt Pavements. Butterworth-Heinemann, Oxford, United Kingdom. doi:10.1016/C2014-0-02643-3.

Adwan, I., Milad, A., Memon, Z. A., Widyatmoko, I., Ahmat Zanuri, N., Memon, N. A., & Yusoff, N. I. M. (2021). Asphalt Pavement Temperature Prediction Models: A Review. Applied Sciences, 11(9), 3794. doi:10.3390/app11093794.

Zhang, J., Fwa, T. F., Tan, K. H., & Shi, X. P. (2003). Model for nonlinear thermal effect on pavement warping stresses. Journal of Transportation Engineering, 129(6), 695–702. doi:10.1061/(ASCE)0733-947X(2003)129:6(695).

Asefzadeh, A., Hashemian, L., & Bayat, A. (2017). Development of statistical temperature prediction models for a test road in Edmonton, Alberta, Canada. International Journal of Pavement Research and Technology, 10(5), 369–382. doi:10.1016/j.ijprt.2017.05.004.

Alavi, M. Z., Pouranian, M. R., & Hajj, E. Y. (2014). Prediction of asphalt pavement temperature profile with finite control volume method. Transportation Research Record, 2456(1), 96–106. doi:10.3141/2456-10.

Ayasrah, U. B., Tashman, L., AlOmari, A., & Asi, I. (2023). Development of a temperature prediction model for flexible pavement structures. Case Studies in Construction Materials, 18, e01697. doi:10.1016/j.cscm.2022.e01697.

Huang, Y., Nojumi, M. M., Ansari, S., Hashemian, L., & Bayat, A. (2024). Multi-depth temperature prediction using machine learning for pavement sections. Journal of Applied Remote Sensing, 18(01), 4517. doi:10.1117/1.jrs.18.014517.

Kebede, Y. B., Yang, M. Der, & Huang, C. W. (2024). Real-time pavement temperature prediction through ensemble machine learning. Engineering Applications of Artificial Intelligence, 135, 1–21. doi:10.1016/j.engappai.2024.108870.

Diefenderfer, B. K., Al-Qadi, I. L., & Diefenderfer, S. D. (2006). Model to predict pavement temperature profile: Development and validation. Journal of Transportation Engineering, 132(2), 162–167. doi:10.1061/(ASCE)0733-947X(2006)132:2(162).

Chao, J., & Jinxi, Z. (2018). Prediction Model for Asphalt Pavement Temperature in High-Temperature Season in Beijing. Advances in Civil Engineering, 2018, 1–11. doi:10.1155/2018/1837952.

Hassan, H. F., Al-Nuaimi, A., Al-Oraimi, S., & Jafar, T. M. A. (2008). Development of asphalt binder performance grades for Omani climate. Construction and Building Materials, 22(8), 1684–1690. doi:10.1016/j.conbuildmat.2007.06.016.

Zeiada, W., Ashour, A. G., Mirou, S. M., Abuzwidah, M., & Shanablah, A. (2024). Development of superpave asphalt binder specifications to meet climate conditions in the UAE. International Journal of Pavement Engineering, 25(1), 2386627. doi:10.1080/10298436.2024.2386627.

Wahhab, H. I. A.-A., Asi, I. M., & Ramadhan, R. H. (2001). Modeling Resilient Modulus and Temperature Correction for Saudi Roads. Journal of Materials in Civil Engineering, 13(4), 298–305. doi:10.1061/(asce)0899-1561(2001)13:4(298).

Tabatabaie, S. A., Ziari, H., & Khalili, M. (2008). Modeling Temperature and Resilient Modulus of Asphalt Pavements for Tropic Zones of Iran. Asian Journal of Scientific Research, 1(6), 579–588. doi:10.3923/ajsr.2008.579.588.

Salem, H. A. (2015). Research of the relevant temperatures for the design of pavement constructions on the desert roads in Libya. Ph.D. Thesis, University of Novi Sad, Novi Sad, Serbia.

Nivitha, M. R., & Krishnan, J. M. (2014). Development of Pavement Temperature Contours for India. Journal of the Institution of Engineers (India): Series A, 95(2), 83–90. doi:10.1007/s40030-014-0074-y.

Ariawan, I. M. A., Subagio, B. S., & Setiadji, B. H. (2015). Development of asphalt pavement temperature model for tropical climate conditions in West Bali region. Procedia Engineering, 125, 474–480. doi:10.1016/j.proeng.2015.11.126.

Ntramah, S., Tutu, K. A., & Tuffour, Y. A. (2024). Development of Asphalt Pavement Temperature Prediction Models for Sub-Saharan Tropical Climate: The Case of Ghana. International Journal of Pavement Research and Technology. doi:10.1007/s42947-024-00451-x.

Herry, P., Subagio, B. S., Susanto, E. H., & Wibowo, S. S. (2024). Development of Maximum Temperature Prediction Model within Asphalt Pavement Layers for Airports in Tropical Regions. 18th East Asia-Pacific Conference on Structural Engineering and Construction (EASEC-18), 13-15 November, 2024, Chiang Mai, Thailand.

Shrivastav, A. (2021). Research Paper for Smart Home Automation System using ESP32 with Blynk, IR Remote & Manual control Relay, IoT Project. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, 9(5), 368–372.

M. Broell, L., Hanshans, C., & Kimmerle, D. (2023). IoT on an ESP32: Optimization Methods Regarding Battery Life and Write Speed to an SD-Card. Edge Computing - Technology, Management and Integration. IntechOpen, London, United Kingdom. doi:10.5772/intechopen.110752.

Christopher, J. O., Resquites, M., Parrocho, M. A., Vinegas, N., Vinyl, D. R., & Oquiño, H. (2023). IoT-Based Temperature Monitoring and Automatic Fan Control Using ESP32. IRE Journals, 7(5), 35–44.

Kengkla, N., Ratanaphan, S., Earmyang, T., Chokdurong, M., & Tisa, P. (2020). The rejuvenation of valve-regulated lead-acid (VRLA) battery with pulse width modulation (PWM) charging and ultrasonic (No. 2775). EasyChair, Wythenshawe, United Kingdom.

Tang, J.-X., Du, J.-H., Lin, Y., & Jia, Q.-S. (2020). Predictive Maintenance of VRLA Batteries in UPS towards Reliable Data Centers. IFAC-PapersOnLine, 53(2), 13607–13612. doi:10.1016/j.ifacol.2020.12.854.

de Anda, M. F., Butler, P. C., Miller, J. L., & Moseley, P. T. (2004). Reliability of valve-regulated lead-acid batteries for stationary applications (No. SAND2004-0914). Sandia National Laboratories (SNL), Albuquerque, United States.

Kong, H., Wang, J., Cai, L., Cao, J., Zhou, M., & Fan, Y. (2024). Surface Solar Radiation Resource Evaluation of Xizang Region Based on Station Observation and High-Resolution Satellite Dataset. Remote Sensing, 16(8), 1405. doi:10.3390/rs16081405.

Huang, Y. H. (2004) Pavement Analysis and Design (2nd Edition). Pearson Prentice Hall, Upper Saddle River, United States.

RDO Asphalt 09/24. (2009). Guidelines for the calculation of the superstructure of traffic areas with asphalt surface layer. FGSV Verlag, Köln, Germany. (In German).

Kleizienė, R., Vaitkus, A., Židanavičiūtė, J., & Marcinkevičius, E. (2017). Classification of surface temperature for the flexible pavement design. Proccedings of 10th International Conference “Environmental Engineering.” doi:10.3846/enviro.2017.139.

Lasdon, L. S., Fox, R. L., & Ratner, M. W. (1974). Nonlinear optimization using the generalized reduced gradient method. Revue Française d’automatique, Informatique, Recherche Opérationnelle. Recherche Opérationnelle, 8(V3), 73–103. doi:10.1051/ro/197408v300731.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-03-01

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Pebri Herry, Ade Sjafruddin, Bambang Sugeng Subagio, Eri Susanto Hariyadi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message