The Influence of Precursor to Activator Ratio and Curing Temperature on Geopolymer Paste with One-Part Method
Downloads
Geopolymer is an eco-friendly material that serves as a sustainable alternative to Portland cement in construction. This binder reduces carbon dioxide emissions from cement production. However, its manufacturing process remains complex and requires professional expertise. This study explores an environmentally friendly cement produced through the “One-Part Method” (or the “just add water” method), which simplifies geopolymer application, making it as user-friendly as Portland cement. However, research on the performance of one-part geopolymers with varying activator contents and curing temperatures remains limited. In this study, Class F fly ash was used as a precursor, combined with a dry activator made from geothermal sludge and sodium hydroxide (NaOH). Two compositions were tested with precursor-to-dry activator ratios of 5:1 (OPG-F5F) and 7:1 (OPG-F7F). The compressive strength was significantly influenced by the Si/Al, Na/Si, Na/Al, and water/solid ratios derived from the precursor and activator. Mechanical properties were analyzed at three curing temperatures: ambient, 40°C, and 60°C. Results showed that OPG-F7F achieved the highest strength at 60°C, reaching 76.1 MPa at 28 days. Mineral analysis before and after steam curing revealed no changes in composition, while morphological analysis indicated that higher temperatures produced a denser geopolymer matrix. These findings demonstrate the strong potential of geopolymer cement as a viable Portland cement replacement using the One-Part Method.
Downloads
[1] Liu, Z., Ciais, P., Deng, Z., Davis, S. J., Zheng, B., Wang, Y., Cui, D., Zhu, B., Dou, X., Ke, P., Sun, T., Guo, R., Zhong, H., Boucher, O., Bréon, F. M., Lu, C., Guo, R., Xue, J., Boucher, E., … Chevallier, F. (2020). Carbon Monitor, a near-real-time daily dataset of global CO2 emission from fossil fuel and cement production. Scientific Data, 7(1). doi:10.1038/s41597-020-00708-7.
[2] Andrew, R. M. (2018). Global CO2 emissions from cement production. Earth System Science Data, 10(1), 195–217. doi:10.5194/essd-10-195-2018.
[3] Habert, G., Miller, S. A., John, V. M., Provis, J. L., Favier, A., Horvath, A., & Scrivener, K. L. (2020). Environmental impacts and decarbonization strategies in the cement and concrete industries. Nature Reviews Earth and Environment, 1(11), 559–573. doi:10.1038/s43017-020-0093-3.
[4] Kwasny, J., Aiken, T. A., Soutsos, M. N., McIntosh, J. A., & Cleland, D. J. (2018). Sulfate and acid resistance of lithomarge-based geopolymer mortars. Construction and Building Materials, 166, 537–553. doi:10.1016/j.conbuildmat.2018.01.129.
[5] Aiken, T. A., Kwasny, J., Sha, W., & Soutsos, M. N. (2018). Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack. Cement and Concrete Research, 111, 23–40. doi:10.1016/j.cemconres.2018.06.011.
[6] Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125–130. doi:10.1016/j.conbuildmat.2013.01.023.
[7] Silva, P. De, Sagoe-Crenstil, K., & Sirivivatnanon, V. (2007). Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cement and Concrete Research, 37(4), 512–518. doi:10.1016/j.cemconres.2007.01.003.
[8] Qu, F., Li, W., Wang, K., Zhang, S., & Sheng, D. (2021). Performance deterioration of fly ash/slag-based geopolymer composites subjected to coupled cyclic preloading and sulfuric acid attack. Journal of Cleaner Production, 321, 128942. doi:10.1016/j.jclepro.2021.128942.
[9] Dupuy, C., Havette, J., Gharzouni, A., Texier-Mandoki, N., Bourbon, X., & Rossignol, S. (2019). Metakaolin-based geopolymer: Formation of new phases influencing the setting time with the use of additives. Construction and Building Materials, 200, 272–281. doi:10.1016/j.conbuildmat.2018.12.114.
[10] Bayuaji, R., Nuruddin, M. F., Francis, S., Ekaputri, J. J., Triwulan, Junaedi, S., & Fansuri, H. (2015). Mechanical properties of MIRHA-fly ash geopolymer concrete. Materials Science Forum, 803, 49–57. doi:10.4028/www.scientific.net/MSF.803.49.
[11] Emoto, Y., Yoshizawa, K., Shikata, N., Tsubura, A., & Nagasaki, Y. (2016). Autopsy results of a case of ingestion of sodium hydroxide solution. Journal of Toxicologic Pathology, 29(1), 45–47. doi:10.1293/tox.2015-0049.
[12] Fujioka, M., Fukui, K., Yoshino, K., Noguchi, M., Soeda, M., & Ito, M. (2022). Microscopic changes over time in human dermis after exposure to sodium hydroxide. Burns Open, 6(2), 89–91. doi:10.1016/j.burnso.2022.03.002.
[13] Das, S. K., & Shrivastava, S. (2021). Influence of molarity and alkali mixture ratio on ambient temperature cured waste cement concrete based geopolymer mortar. Construction and Building Materials, 301, 124380. doi:10.1016/j.conbuildmat.2021.124380.
[14] Hajimohammadi, A., & van Deventer, J. S. J. (2017). Characterisation of One-Part Geopolymer Binders Made from Fly Ash. Waste and Biomass Valorization, 8(1), 225–233. doi:10.1007/s12649-016-9582-5.
[15] Liu, W., Zhao, J., Feng, Y., Zhang, B., & Xie, J. (2025). Seawater-mixed alkali-activated materials: A state-of-the-art review. Journal of Materials Science, 60(5), 2169-2198. doi:10.1007/s10853-025-10605-2.
[16] Askarian, M., Tao, Z., Adam, G., & Samali, B. (2018). Mechanical properties of ambient cured one-part hybrid OPC-geopolymer concrete. Construction and Building Materials, 186, 330–337. doi:10.1016/j.conbuildmat.2018.07.160.
[17] Petrus, H. T. B. M., Fairuz, F. I., Sa’dan, N., Olvianas, M., Astuti, W., Jenie, S. N. A., Setiawan, F. A., Anggara, F., Ekaputri, J. J., & Bendiyasa, I. M. (2021). Green geopolymer cement with dry activator from geothermal sludge and sodium hydroxide. Journal of Cleaner Production, 293(2), 126143. doi:10.1016/j.jclepro.2021.126143.
[18] Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., & Illikainen, M. (2018). One-part alkali-activated materials: A review. Cement and Concrete Research, 103(October), 21–34. doi:10.1016/j.cemconres.2017.10.001.
[19] Ma, C., Long, G., Shi, Y., & Xie, Y. (2018). Preparation of cleaner one-part geopolymer by investigating different types of commercial sodium metasilicate in China. Journal of Cleaner Production, 201, 636–647. doi:10.1016/j.jclepro.2018.08.060.
[20] Guo, S., Wu, Y., Jia, Z., Qi, X., & Wang, W. (2023). Sodium-based activators in alkali- activated materials: Classification and comparison. Journal of Building Engineering, 70(March), 106397. doi:10.1016/j.jobe.2023.106397.
[21] Olvianas, M., Najmina, M., Prihardana, B. S. L., Sutapa, F. A. K. G. P., Nurhayati, A., & Petrus, H. T. B. M. (2015). Study on the Geopolymerization of Geothermal Silica and Kaolinite. Advanced Materials Research, 1112, 528–532. doi:10.4028/www.scientific.net/amr.1112.528.
[22] Alcântara-Domingos, R. R., & Fungaro, D. A. (2025). Circular economy: development of calcium silicate hydrated compounds aimed at the sustainable use of waste from the coal industry. Brazilian Journal of Animal and Environmental Research, 8(1), e77647-e77647. doi:10.34188/bjaerv8n1-096.
[23] Khedmati, M., Alanazi, H., Kim, Y. R., Nsengiyumva, G., & Moussavi, S. (2018). Effects of Na2O/SiO2 molar ratio on properties of aggregate-paste interphase in fly ash-based geopolymer mixtures through multiscale measurements. Construction and Building Materials, 191, 564–574. doi:10.1016/j.conbuildmat.2018.10.024.
[24] Leonard Wijaya, A., Jaya Ekaputri, J., & Triwulan. (2017). Factors influencing strength and setting time of fly ash based-geopolymer paste. MATEC Web of Conferences, 138. doi:10.1051/matecconf/201713801010.
[25] Giergiczny, Z. (2019). Fly ash and slag. Cement and Concrete Research, 124(February). doi:10.1016/j.cemconres.2019.105826.
[26] Askarian, M., Tao, Z., Samali, B., Adam, G., & Shuaibu, R. (2019). Mix composition and characterisation of one-part geopolymers with different activators. Construction and Building Materials, 225, 526–537. doi:10.1016/j.conbuildmat.2019.07.083.
[27] Junaid, M. T., Khennane, A., Kayali, O., Sadaoui, A., Picard, D., & Fafard, M. (2014). Aspects of the deformational behaviour of alkali activated fly ash concrete at elevated temperatures. Cement and Concrete Research, 60, 24–29. doi:10.1016/j.cemconres.2014.01.026.
[28] Yousefi Oderji, S., Chen, B., Ahmad, M. R., & Shah, S. F. A. (2019). Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: Effect of slag and alkali activators. Journal of Cleaner Production, 225, 1–10. doi:10.1016/j.jclepro.2019.03.290.
[29] Dong, M., Elchalakani, M., & Karrech, A. (2020). Development of high strength one-part geopolymer mortar using sodium metasilicate. Construction and Building Materials, 236, 117611. doi:10.1016/j.conbuildmat.2019.117611.
[30] Triwulan, M., Ekaputri, J. J., & Priyanka, N. F. (2017). The Effect of Temperature Curing on Geopolymer Concrete. MATEC Web of Conferences, 97, 0–5. doi:10.1051/matecconf/20179701005.
[31] Ekaputri, J. J., Triwulan, Junaedi, S., Fansuri, & Aji, R. B. (2015). Light weight geopolymer paste made with Sidoarjo mud (Lusi). Materials Science Forum, 803, 63–74. doi:10.4028/www.scientific.net/MSF.803.63.
[32] L. Hake, S., Awasarmal, P. R., & Damgir, R. M. (2019). Durability Study on Fly Ash Based Geopolymer Concrete for Acidic Environment. Global Journal of Material Science and Engineering, August, 13–17. doi:10.37516/global.j.mater.sci.eng.2019.0076.
[33] Alnkaa, A., Yaprak, H., Memis, S., & Kaplan, G. (2018). Effect of Different Cure Conditions on the Shrinkage of Geopolymer Mortar Effect of Different Cure Conditions on the Shrinkage of Geopolymer Mortar. International Journal of Engineering Research and Development, 14(10), 51–55.
[34] Karim, M. R., Zain, M. F. M., Jamil, M., Lai, F. C., & Islam, M. N. (2011). Strength development of mortar and concrete containing fly ash: A review. International Journal of Physical Sciences, 6(17), 4137–4153. doi:10.5897/IJPS11.232.
[35] Cheerarot, R., & Jaturapitakkul, C. (2004). A study of disposed fly ash from landfill to replace Portland cement. Waste Management, 24(7), 701–709. doi:10.1016/j.wasman.2004.02.003.
[36] Aziz, I. H., Abdullah, M. M. A. B., Mohd Salleh, M. A. A., Azimi, E. A., Chaiprapa, J., & Sandu, A. V. (2020). Strength development of solely ground granulated blast furnace slag geopolymers. Construction and Building Materials, 250, 118720. doi:10.1016/j.conbuildmat.2020.118720.
[37] Swathi, B., & Vidjeapriya, R. (2023). Influence of precursor materials and molar ratios on normal, high, and ultra-high performance geopolymer concrete – A state of art review. Construction and Building Materials, 392, 132006. doi:10.1016/j.conbuildmat.2023.132006.
[38] Yaseri, S., Hajiaghaei, G., Mohammadi, F., Mahdikhani, M., & Farokhzad, R. (2017). The role of synthesis parameters on the workability, setting and strength properties of binary binder based geopolymer paste. Construction and Building Materials, 157, 534–545. doi:10.1016/j.conbuildmat.2017.09.102.
[39] Davidovits, J. (1991). Geopolymers - Inorganic polymeric new materials. Journal of Thermal Analysis, 37(8), 1633–1656. doi:10.1007/BF01912193.
[40] Wang, Y., Liu, X., Zhang, W., Li, Z., Zhang, Y., Li, Y., & Ren, Y. (2020). Effects of Si/Al ratio on the efflorescence and properties of fly ash based geopolymer. Journal of Cleaner Production, 244, 118852. doi:10.1016/j.jclepro.2019.118852.
[41] Lee, B., Kim, G., Kim, R., Cho, B., Lee, S., & Chon, C. M. (2017). Strength development properties of geopolymer paste and mortar with respect to amorphous Si/Al ratio of fly ash. Construction and Building Materials, 151, 512–519. doi:10.1016/j.conbuildmat.2017.06.078.
[42] de Jong, B. H. W. S., & Brown, G. E. (1980). Polymerization of silicate and aluminate tetrahedra in glasses, melts, and aqueous solutions-I. Electronic structure of H6Si2O7, H6AlSiO71-, and H6Al2O72-. Geochimica et Cosmochimica Acta, 44(3), 491–511. doi:10.1016/0016-7037(80)90046-0.
[43] Duxson, P., Provis, J. L., Lukey, G. C., Mallicoat, S. W., Kriven, W. M., & Van Deventer, J. S. J. (2005). Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269(1–3), 47–58. doi:10.1016/j.colsurfa.2005.06.060.
[44] Liu, J., Doh, J. H., Dinh, H. L., Ong, D. E. L., Zi, G., & You, I. (2022). Effect of Si/Al molar ratio on the strength behavior of geopolymer derived from various industrial waste: A current state of the art review. Construction and Building Materials, 329(February), 127134. doi:10.1016/j.conbuildmat.2022.127134.
[45] Liu, J., Li, X., Lu, Y., & Bai, X. (2020). Effects of Na/Al ratio on mechanical properties and microstructure of red mud-coal metakaolin geopolymer. Construction and Building Materials, 263, 120653. doi:10.1016/j.conbuildmat.2020.120653.
[46] Hou, L., Li, J., & Lu, Z. yuan. (2019). Effect of Na/Al on formation, structures and properties of metakaolin based Na-geopolymer. Construction and Building Materials, 226, 250–258. doi:10.1016/j.conbuildmat.2019.07.171.
[47] Provis, J. L., & van Deventer, J. S. J. (2007). Geopolymerisation kinetics. 2. Reaction kinetic modelling. Chemical Engineering Science, 62(9), 2318–2329. doi:10.1016/j.ces.2007.01.028.
[48] Rees, C. A., Provis, J. L., Lukey, G. C., & Van Deventer, J. S. J. (2007). In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation. Langmuir, 23(17), 9076–9082. doi:10.1021/la701185g.
[49] Ma, Z., Wang, W., Li, J., Gao, J., Lu, G., Song, H., Wu, H., & Guo, Y. (2023). Long-term dissolution behavior of amorphous aluminosilicate in sodium hydroxide solution for geopolymer synthesis using circulating fluidized bed combustion fly ash. Construction and Building Materials, 394 (August 2022), 132143. doi:10.1016/j.conbuildmat.2023.132143.
[50] Perdanawati, R. A., Risdanareni, P., Setiamarga, D. H. E., Ekaputri, J. J., Kusbiantoro, A., & Liao, M. C. (2024). The Potential of Seawater in Geopolymer Mixtures – Effect of Alkaline Activator, Seawater, and Steam Curing on the Strength of Geopolymer Paste. Journal of Ecological Engineering, 25(10), 370–380. doi:10.12911/22998993/192526.
[51] Jiao, Z., Li, X., & Yu, Q. (2021). Effect of curing conditions on freeze-thaw resistance of geopolymer mortars containing various calcium resources. Construction and Building Materials, 313(October), 125507. doi:10.1016/j.conbuildmat.2021.125507.
[52] Wu, H., He, M., Wu, S., Cheng, J., Wang, T., Che, Y., Du, Y., & Deng, Q. (2024). Effects of binder component and curing regime on compressive strength, capillary water absorption, shrinkage and pore structure of geopolymer mortars. Construction and Building Materials, 442(May), 137707. doi:10.1016/j.conbuildmat.2024.137707.
[53] Van Jaarsveld, J. G. S., Van Deventer, J. S. J., & Lukey, G. C. (2002). The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. Chemical Engineering Journal, 89(1–3), 63–73. doi:10.1016/S1385-8947(02)00025-6.
[54] Saxena, S. K., & Kumar, M. (2018). Influence of alkali solutions on properties of pond fly ash-based geopolymer mortar cured under different conditions. Advances in Cement Research, 30(1), 1–7. doi:10.1680/jadcr.17.00038.
[55] Cheah, C. B., Tan, L. E., & Ramli, M. (2019). The engineering properties and microstructure of sodium carbonate activated fly ash/ slag blended mortars with silica fume. Composites Part B: Engineering, 160, 558–572. doi:10.1016/j.compositesb.2018.12.056.
[56] Lopes, A., Lopes, S., & Pinto, I. (2023). Influence of Curing Temperature on the Strength of a Metakaolin-Based Geopolymer. Materials, 16(23). doi:10.3390/ma16237460.
[57] Sajan, P., Jiang, T., Lau, C. K., Tan, G., & Ng, K. (2021). Combined effect of curing temperature, curing period and alkaline concentration on the mechanical properties of fly ash-based geopolymer. Cleaner Materials, 1(June), 100002. doi:10.1016/j.clema.2021.100002.
[58] Wu, R., Gu, Q., Gao, X., Huang, J., Guo, Y., & Zhang, H. (2024). Effect of curing conditions on the alkali-activated blends: Microstructure, performance and economic assessment. Journal of Cleaner Production, 445, 141344. doi:10.1016/j.jclepro.2024.141344.
[59] Petrus, H. T. B. M., Olvianas, M., Shafiyurrahman, M. F., Pratama, I. G. A. A. N., Jenie, S. N. A., Astuti, W., Nurpratama, M. I., Ekaputri, J. J., & Anggara, F. (2022). Circular Economy of Coal Fly Ash and Silica Geothermal for Green Geopolymer: Characteristic and Kinetic Study. Gels, 8(4). doi:10.3390/gels8040233.
[60] Liu, Z., Bu, L., Wang, Z., & Hu, G. (2019). Durability and microstructure of steam cured and autoclaved PHC pipe piles. Construction and Building Materials, 209, 679–689. doi:10.1016/j.conbuildmat.2019.03.166.
[61] Mustafa Al Bakri, A. M., Kamarudin, H., Bnhussain, M., Rafiza, A. R., & Zarina, Y. (2012). Effect of Na2SiO3/NaOH ratios and NaOH molarities on compressive strength of fly-ash-based geopolymer. ACI Materials Journal, 109(5), 503–508. doi:10.14359/51684080.
[62] Lv, X., Dong, Y., Wang, R., Lu, C., & Wang, X. (2020). Resistance improvement of cement mortar containing silica fume to external sulfate attacks at normal temperature. Construction and Building Materials, 258, 119630. doi:10.1016/j.conbuildmat.2020.119630.
[63] Zhang, S. S., Wang, S., Li, W., Cai, H., & Chen, X. (2025). Improving efflorescence resistance of metakaolin-based geopolymer via magnesium incorporation. Construction and Building Materials, 489, 142421. doi:10.1016/j.conbuildmat.2025.142421.
[64] Ge, Y., Tian, X., Huang, D., Zhong, Q., Yang, Y., & Peng, H. (2023). Understanding efflorescence behavior and compressive strength evolution of metakaolin-based geopolymer under a pore structure perspective. Journal of Building Engineering, 66(August 2022), 105828. doi:10.1016/j.jobe.2023.105828.
[65] Xu, Z., Yue, J., Pang, G., Li, R., Zhang, P., & Xu, S. (2021). Influence of the Activator Concentration and Solid/Liquid Ratio on the Strength and Shrinkage Characteristics of Alkali-Activated Slag Geopolymer Pastes. Advances in Civil Engineering, 2021. doi:10.1155/2021/6631316.
[66] Hanumananaik, M., & Subramaniam, K. V. L. (2023). Shrinkage in low-calcium fly ash geopolymers for precast applications: Reaction product content and pore structure under drying conditions. Journal of Building Engineering, 78, 107583. doi:10.1016/j.jobe.2023.107583.
[67] Ding, Y., Dai, J. G., & Shi, C. J. (2016). Mechanical properties of alkali-activated concrete: A state-of-the-art review. Construction and Building Materials, 127, 68–79. doi:10.1016/j.conbuildmat.2016.09.121.
[68] Zhang, H. Y., Kodur, V., Wu, B., Yan, J., & Yuan, Z. S. (2018). Effect of temperature on bond characteristics of geopolymer concrete. Construction and Building Materials, 163, 277–285. doi:10.1016/j.conbuildmat.2017.12.043.
[69] Zhang, H. Y., Liu, J. C., & Wu, B. (2021). Mechanical properties and reaction mechanism of one-part geopolymer mortars. Construction and Building Materials, 273. doi:10.1016/j.conbuildmat.2020.121973.
[70] Zhao, Q., Ma, C., Huang, B., & Lu, X. (2023). Development of alkali activated cementitious material from sewage sludge ash: Two-part and one-part geopolymer. Journal of Cleaner Production, 384, 135547. doi:10.1016/j.jclepro.2022.135547.
[71] Aliabdo, A. A., Abd Elmoaty, A. E. M., & Salem, H. A. (2016). Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance. Construction and Building Materials, 121, 694–703. doi:10.1016/j.conbuildmat.2016.06.062.
[72] Konduru, H., & Karthiyaini, S. (2024). Enhancing solidification in one-part geopolymer systems through alkali-thermal activation of bauxite residue and silica fume integration. Case Studies in Construction Materials, 21, 3444. doi:10.1016/j.cscm.2024.e03444.
[73] Ryu, G. S., Lee, Y. B., Koh, K. T., & Chung, Y. S. (2013). The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Construction and Building Materials, 47, 409–418. doi:10.1016/j.conbuildmat.2013.05.069.
[74] Chouksey, A., Verma, M., Dev, N., Rahman, I., & Upreti, K. (2022). An investigation on the effect of curing conditions on the mechanical and microstructural properties of the geopolymer concrete. Materials Research Express, 9(5), 055003. doi:10.1088/2053-1591/ac6be0.
[75] Chen, Z., Yu, J., Nong, Y., Yang, Y., Zhang, H., & Tang, Y. (2023). Beyond time: Enhancing corrosion resistance of geopolymer concrete and BFRP bars in seawater. Composite Structures, 322. doi:10.1016/j.compstruct.2023.117439.
[76] Zhang, M., Zhao, M., Zhang, G., Sietins, J. M., Granados-Focil, S., Pepi, M. S., Xu, Y., & Tao, M. (2018). Reaction kinetics of red mud-fly ash based geopolymers: Effects of curing temperature on chemical bonding, porosity, and mechanical strength. Cement and Concrete Composites, 93, 175–185. doi:10.1016/j.cemconcomp.2018.07.008.
[77] Christidis, G., Paipoutlidi, K., Marantos, I., & Perdikatsis, V. (2020). Determination of amorphous matter in industrial minerals with X-ray diffraction using Rietveld refinement. Bulletin of the Geological Society of Greece, 56(1), 1. doi:10.12681/bgsg.20940.
[78] Khale, D., & Chaudhary, R. (2007). Mechanism of geopolymerization and factors influencing its development: a review. Journal of materials science, 42(3), 729-746. doi:10.1007/s10853-006-0401-4.
[79] Wang, Y. S., Alrefaei, Y., & Dai, J. G. (2021). Roles of hybrid activators in improving the early-age properties of one-part geopolymer pastes. Construction and Building Materials, 306, 124880. doi:10.1016/j.conbuildmat.2021.124880.
[80] Ma, C., Zhao, B., Guo, S., Long, G., & Xie, Y. (2019). Properties and characterization of green one-part geopolymer activated by composite activators. Journal of Cleaner Production, 220, 188–199. doi:10.1016/j.jclepro.2019.02.159.
[81] Jaya Ekaputri, J., Syabrina Mutiara, I., Nurminarsih, S., Van Chanh, N., Maekawa, K., & Setiamarga, D. H. E. (2017). The effect of steam curing on chloride penetration in geopolymer concrete. MATEC Web of Conferences, 138. doi:10.1051/matecconf/201713801019.
[82] Al Bakri Abdullah, M. M., Mohd Tahir, M. F., Hussin, K., Binhussain, M., & Ekaputri, J. J. (2016). Effect of microwave curing to the compressive strength of fly ash based geopolymer mortar. Materials Science Forum, 841, 193–199. doi:10.4028/www.scientific.net/MSF.841.193.
[83] Zeyad, A. M., Tayeh, B. A., Adesina, A., de Azevedo, A. R. G., Amin, M., Hadzima-Nyarko, M., & Saad Agwa, I. (2022). Review on effect of steam curing on behavior of concrete. Cleaner Materials, 3. doi:10.1016/j.clema.2022.100042.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.