Stability Analysis of Dam with Asphalt Core in Static and Pseudo-Static Conditions
Downloads
Manikin Dam was constructed to address the issue of raw water shortage in Kupang Regency and Kupang City. However, there were challenges due to clay materials that did not meet the required specifications. Therefore, this study aimed to use asphalt core design as an alternative by analyzing the stability of the embankment body under both static and pseudo-static conditions. To achieve the aim, the Bishop method was applied using the GeoStudio SLOPE/W application, along with manual calculations. The results showed that the safety factor (SF) at the end of construction without seismic loads met the minimum value of 1.300. Under various water level conditions (FWL, NWL, LWL), SF consistently met the minimum required value of 1.500. Furthermore, the seismic analysis considered both operational base earthquakes (OBE) with a return period of 100 years and maximum design earthquakes (MDE), which had a return period of 5,000 years. Even under OBE and MDE seismic loading conditions, SF exceeded the minimum required value. This implied that the use of an asphalt core could be considered safe in terms of preventing potential landslides under both static and pseudo-static conditions. Based on this outcome, asphalt core became a practical alternative for future dam construction, particularly in areas where clay could be scarce or unstable for technical reasons.
Downloads
[1] Arifin, Z., Ariantini, M. S., Sudipa, I. G. I., Chaniago, R., Dwipayana, A. D., Adhicandra, I., ... & Alfiah, T. (2023). Green Technology: Application of Environmentally Friendly Technology in Various Fields. Sonpedia Publishing Indonesia, Jambi, Indonesia. (In Indonesian).
[2] BPS-Statistics Indonesia (2024). Kupang Regency Central Statistics Agency, Kupang Regency in Figures 2024. Available online: https://kupangkab.bps.go.id/en/publication/2024/02/28/53d69b4e26e05c2a944307bd/kabupaten-kupang-dalam-angka-2024.html (accessed on May 2025).
[3] PT. Indrakarya (Persero). (2018) Geological and Soil Mechanics Investigation Report, Certification of Design and Test Model of Manikin Dam Kupang (Balai Wilayang Sungai NT II, Kupang, 2018), 47–48.
[4] Manubulu, C. C., Suni, Y. P. K., & Da Costa, D. G. (2023). Determination of River Border Width at the Manikin River in Kupang Regency, Nusa Tenggara Timur Province. IOP Conference Series: Earth and Environmental Science, 1233(1), 012041. doi:10.1088/1755-1315/1233/1/012041.
[5] K Hoeg, K. (1993). Asphaltic concrete cores for embankments dam experience and practise. Norwegian Geotechnical Institute, Oslo, Norway.
[6] Wang, Z., Song, Z., Liu, Y., & Wang, F. (2025). Study on the Seismic Response of an Asphalt Concrete Core Dam-Overburden System Considering the Spatial Variability of Material Parameters. Journal of Earthquake Engineering, 29(2), 525–546. doi:10.1080/13632469.2024.2434518.
[7] Wang, W. (2024). A Material Stress–Strain–Time–Temperature Creep Model for the Analysis of Asphalt Cores in Embankment Dams. Applied Sciences (Switzerland), 14(8). doi:10.3390/app14083399.
[8] Wandira, I. G. P. (2022). Aspal Beton (Asphalt Concrete). NIP. 19660221 199503 1 001. Available online: https://simantu.pu.go.id/personal/img-post/autocover/ad3bf4eb7ddb399c8eb350179e5827c2.pdf (accessed on May 2025).
[9] Smesnik, M., Krstic, S., Guven, S., & Verdianz, M. (2019). Asphalt core embankment dams in turkey–dam design, core material and construction. Proceedings of the ICOLD–European Club Symposium, 2-4 October 2019, Crete, Greece.
[10] Fernández-Gómez, W. D., Rondón Quintana, H., & Reyes Lizcano, F. (2013). A review of asphalt and asphalt mixture aging. Ingenieria e Investigacion, 33(1), 5–12. doi:10.15446/ing.investig.v33n1.37659.
[11] Alicescu, V., Tournier, J. P., & Vannobel, P. (2008). Design and construction of Nemiscau-1 Dam, the first asphalt core rockfill dam in North America. CDA Annual Conference (2008), 27 September-2 October 2008, Winnipeg, Canada.
[12] Wu, S., Pang, L., & Zhu, G. (2008). The effect of ageing on rheological properties and chemical conversions of asphalts. Key Engineering Materials, 385–387, 481–484. doi:10.4028/www.scientific.net/kem.385-387.481.
[13] Zhu, Y., Zhang, Y., Wang, W., & Feng, S. (2023). Could Hydraulic Fracturing Take Place for Asphalt Core in Embankment Dams through Possible Cracks in the Core? Applied Sciences (Switzerland), 13(3), 1523. doi:10.3390/app13031523.
[14] Zhang, H., Yang, X., Li, Y., Fu, Q., & Rui, H. (2022). Laboratory Evaluation of Dynamic Characteristics of a New High-Modulus Asphalt Mixture. Sustainability (Switzerland), 14(19), 11838. doi:10.3390/su141911838.
[15] Zhao, K., Wang, W., Ye, Z., Wang, L., & Liu, C. (2024). Dynamic Response and Fatigue Damage of Asphalt Pavement Under Multiple Coupling Factors. International Journal of Pavement Research and Technology, 17(4), 890–907. doi:10.1007/s42947-023-00275-1.
[16] Restuti, N. A., Juwono, P. T., & Hendrawan, A. P. (2016). Slope Stability Analysis of Wonorejo Dam Based on the 2004 Earthquake Map and the 2010 Earthquake Map. Jurnal Teknik Pengairan: Journal of Water Resources Engineering, 7(1), 73-82. (In Indonesian).
[17] Sugiharti, D., & Susantin, S. H. (2022). Tatic Stability Analysis Of The Cipanas Dam Body, Ujung Jaya District, Sumedang Regency, West Java Province. Prosiding FTSP Series, 31-41 (In Indonesian).
[18] Klau, R. R., Lango, A. K. W., Krisnayanti, D. S., Udiana, I. M., & De Rozari, P. (2024). Prediction of Peak Discharge Using the SCS Curve Number Method in the Manikin Watershed. IOP Conference Series: Earth and Environmental Science, 1343(1), 12007. doi:10.1088/1755-1315/1343/1/012007.
[19] Ananta, M. I., Limantara, L. M., Fidari, J. S., & Nurdin, H. (2024). Design Rainfall Analysis in the Manikin Dam Watershed, Kupang Regency. Jurnal Teknik Sipil, 13(01), 67-78. (In Indonesian).
[20] Krisnayanti, D. S., Welkis, D. F., Sir, T. M. W., Bunganaen, W., & Damayanti, A. C. (2022). Kajian Nilai Curve Number pada Daerah Aliran Sungai Manikin di Kabupaten Kupang. Jurnal Teknik Sumber Daya Air, 1(1), 1–10. doi:10.56860/jtsda.v1i1.3. (In Indonesian).
[21] Damayanti, A. C., Limantara, L. M., & Haribowo, R. (2022). Design Flood Discharge Analysis Using the Nakayasu HSS, ITB-1 HSS, and Limantara HSS Methods in the Manikin Watershed in Kupang Regency. Jurnal Teknologi Dan Rekayasa Sumber Daya Air, 2(2), 313. doi:10.21776/ub.jtresda.2022.002.02.25. (In Indonesian).
[22] Ekasari, S., Halim, A., & Riman, R. (2023). Stability Analysis Study of Dam Body at Banyu Urip Dam using Geostudio 2018 software in Bojonegoro Regency, East Java. Jurnal Teknik Sipil, 30(1), 121–130. doi:10.5614/jts.2023.30.1.14. (In Indonesian).
[23] Alemie, N. A., Wosenie, M. D., Belew, A. Z., Kibret, E. A., & Ayele, W. T. (2021). Performance evaluation of asphalt concrete core earth-rock fill dam relative to clay core earth-rock fill dam in the case of Megech Dam, Ethiopia. Arabian Journal of Geosciences, 14(24), 2712. doi:10.1007/s12517-021-09009-8.
[24] Feng, S., Wang, W., Hu, W., Deng, Y., Yang, J., Wu, S., Zhang, C., & Höeg, K. (2020). Design and performance of the Quxue asphalt-core rockfill dam. Soils and Foundations, 60(4), 1036–1049. doi:10.1016/j.sandf.2020.06.008.
[25] Merga Bayisa, N. (2019). Relative Performance Evaluation of Asphaltic Concrete Core Embankment Dam and Clay Core Embankment Dam: By Plaxis Software Application. American Journal of Science, Engineering and Technology, 4(1), 18. doi:10.11648/j.ajset.20190401.12.
[26] Roy, S., Jain, V.K., Gupta, M., Chitra, R. (2023). Review of Use of Asphaltic Concrete Core in Earthen/Rock Fill Embankment Dam. Earth Retaining Structures and Stability Analysis. IGC 2021, Lecture Notes in Civil Engineering, 303, Springer, Singapore. doi:10.1007/978-981-19-7245-4_29.
[27] Rewtragulpaibul, C., Jaritngam, S., Wannawong, T., & Somchainuek, O. (2024). Design and Construction Practices of Asphalt Core Embankment. International Conference on Road and Airfield Pavement Technology 2023, 1–10. doi:10.1061/9780784485255.001.
[28] Yang, M., Zhong, Q., Hu, L., Li, Y., & Lu, H. (2024). Model tests and numerical simulation of overtopping-induced breach process of the asphalt concrete core dam. Engineering Failure Analysis, 157, 107877. doi:10.1016/j.engfailanal.2023.107877.
[29] Wijaksono, P., & Abdillah, N. (2023). Analysis of the Effect of Adding Asphalt Emulsion on the Shear Strength and CBR Values of Clay Soil. SLUMP TeS: Jurnal Teknik Sipil, 1(2), 101-107. doi:10.35334/be.v1i1.2477. (In Indonesian).
[30] Herz, E., & Vormwald, M. (2007). A material model for creep and fatigue applied to asphalt. Advances in Construction Materials 2007, Springer, Berlin, Germany. doi:10.1007/978-3-540-72448-3_33.
[31] Hussein, M. M., Fattah, M. Y., & Hilal, M. M. (2022). Assessment of Flexible Pavement Behavior under Dynamic Earthquake Loading. Muthanna Journal of Engineering and Technology, 10(1), 1-8. doi:10.52113/3/eng/mjet/2022-10-01/01-08.
[32] Akhtarpour, A., & Khodaii, A. (2012). 2D & 3D nonlinear dynamic analysis of asphaltic concrete core rockfill dam (a Case study). Proceedings of International Symposium on Dams for a changing world, 5 June 2012, Kyoto, Japan.
[33] Tzenkov, A.D., & Schwager, M.V. (2021). Nonlinear FEM Analysis of the Seismic Behavior of the Menta Bituminous-Face Rockfill Dam. Numerical Analysis of Dams, ICOLD-BW 2019. Lecture Notes in Civil Engineering, 91, Springer, Cham, Switzerland. doi:10.1007/978-3-030-51085-5_35.
[34] Li, C., Song, Z., Wang, F., & Liu, Y. (2024). Analysis of the seismic response and failure evaluation of the slabs of asphalt concrete-faced rockfill dams under SV-Waves with arbitrary angles. Computers and Geotechnics, 168, 106125. doi:10.1016/j.compgeo.2024.106125.
[35] Nurtjahjaningtyas, I., Putra, P. P., & Taufiqurohman, S. H. (2021). Risk Factor Classification Effect on Sematok Dam Slopes Stability. Lowland Technology International Journal, 23(1), 9–19.
[36] Pratama, R. R., Suprijanto, H., & Asmaranto, R. (2021). Stability Analysis of the Main Dam Body at Semantok Dam, Nganjuk, East Java.Jurnal Teknologi Dan Rekayasa Sumber Daya Air, 1(1), 89–102. doi:10.21776/ub.jtresda.2021.001.01.08. (In Indonesian).
[37] Makdisi, F. I., & Seed, H. B. (1978). Simplified procedure for estimating dam and embankment earthquake-induced deformations. Journal of the Geotechnical Engineering Division, 104(7), 849-867. doi:10.1061/AJGEB6.0000668.
[38] Kementerian Pekerjaan Umum dan Perumahan Rakyat. (2017). Dam Stability Analysis Module: Slope Stability Calculation. Basic Dam Planning Training. Bandung Kementeri. Pekerj. Umum dan Perumah, Jakarta, Indonesia. (In Indonesian).
[39] BSN. (2016). Static Slope Stability Analysis Method for Embankment Dams. Badan Standardisasi Nasional, Jakarta, Indonesia. (In Indonesian).
[40] Zolkepli, M. F., Ishak, M. F., & Zaini, M. S. I. (2019). Slope stability analysis using modified Fellenius’s and Bishop’s method. IOP Conference Series: Materials Science and Engineering, 527(1), 12004. doi:10.1088/1757-899X/527/1/012004.
[41] EM 1110-2-1902. (2003). Slope stability. U.S. Army Corps of Engineers, Washington, United States.
[42] Johari, A., Mousavi, S., & Hooshmand Nejad, A. (2015). A seismic slope stability probabilistic model based on Bishop’s method using analytical approach. Scientia Iranica, 22(3), 728–741.
[43] Duncan, J. M., Wright, S. G., & Brandon, T. L. (2014). Soil strength and slope stability. John Wiley & Sons, Hoboken, United States.
[44] Suprapto, R. E., Japarussidik, J., Sriyana, S., & Sadono, K. W. (2021). Pelaparado Dam Risk Assessment Based on the Modified ICOLD Method and the Risk Index Method. Teknik, 42(2), 226–235. doi:10.14710/teknik.v42i2.39715. (In Indonesian).
[45] SNI 3432: 2020. (2020). Procedures for Determining Design Flood and Capacity. Badan Standardisasi Nasional, Jakarta, Indonesia. (In Indonesian).
[46] Maretha, L., Darsono, S., & Sadono, K. W. (2020). Stability and Safety Analysis of the Ciawi Dam (dry dam) in West Java Province.Rang Teknik Journal, 3(2), 243-251. doi:10.31869/rtj.v3i2.1793. (In Indonesian).
[47] Bashar, N.A.M., Zainol, M.R.R.M.A., Aziz, M.S.A., Mazlan, A.Z.A., Zawawi, M.H. (2023). Dam Safety: Highlighted Issues and Reliable Assessment for the Sustainable Dam Infrastructure. Proceedings of the 2nd International Conference on Dam Safety Management and Engineering, ICDSME2023 2023, Water Resources Development and Management, Springer, Singapore. doi:10.1007/978-981-99-3708-0_61.
[48] Shafiei, H., & Eskandari, M. S. (2016). A Review of the Embankment Dam with Asphalt Concrete Core. International Journal of Science and Engineering Investigations, 5(54), 111–114.
[49] Noroozi, A. G., Ajalloeian, R., & Bayat, M. (2022). Experimental study of the role of interface element in earth dams with asphalt concrete core - Case study: Mijran dam. Case Studies in Construction Materials, 16. doi:10.1016/j.cscm.2022.e01004.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.