Experimental and Numerical Analysis of Punching Shear of GFRP-RC Slabs
Abstract
Â
Doi: 10.28991/CEJ-SP2024-010-017
Full Text: PDF
Keywords
References
ACI-440.1R-15. (2015). Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars. American Concrete Institute (ACI), Michigan, United States.
Benmokrane, B., Ahmed, E., Dulude, C., & Boucher, E. (2012). Design, construction, and monitoring of the first worldwide two-way flat slab parking garage reinforced with GFRP bars. Proceedings of the International conference on Composites in Civil Engineering CICE, 13-15 June, Rome, Italy.
Salama, A. E., Hassan, M., Benmokrane, B., & Ferrier, E. (2020). Modified strip model for punching-shear strength of FRP-reinforced concrete edge–column slab connections. Engineering Structures, 216, 110769. doi:10.1016/j.engstruct.2020.110769.
Nguyen-Minh, L., & Rovňák, M. (2013). Punching Shear Resistance of Interior GFRP Reinforced Slab-Column Connections. Journal of Composites for Construction, 17(1), 2–13. doi:10.1061/(asce)cc.1943-5614.0000324.
Ju, M., Park, K., & Park, C. (2018). Punching shear behavior of two-way concrete slabs reinforced with glass-fiber-reinforced polymer (GFRP) bars. Polymers, 10(8), 893. doi:10.3390/polym10080893.
Duan, N., & Zhang, J. (2024). The Impact of Reinforcement Ratio on the Punching Shear of CFRP Grid-Reinforced Concrete Two-Way Slabs. Materials, 17(22), 5576. doi:10.3390/ma17225576.
Talha Junaid, M., Awad, R., Barakat, S., & Metawa, A. (2024). Effect of column dimension on the punching shear capacity of concrete slabs reinforced with GFRP bars. E3S Web of Conferences, 586, 4003. doi:10.1051/e3sconf/202458604003.
Alkhattabi, L., Ayash, N. M., Hassan, M., & Gouda, A. (2024). Investigation of Key Parameters Influencing Shear Behavior in Glass-Fiber-Reinforced Polymer (GFRP)-Reinforced Concrete (RC) Interior Slab–Column Connections. Buildings, 14(5), 1251. doi:10.3390/buildings14051251.
ACI Code-440.11-22. (2022). Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute (ACI), Michigan, United States.
CSA S806-12. (2012). Design and Construction of Building Structures with Fiber Reinforced Polymers. Canadian Standards Association (CSA), Toronto, Canada.
JSCE. (19997). Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials. Japan Society of Civil Engineers (JSCE), Tokyo, Japan.
Lee, J. H., Yang, J. M., & Yoon, Y. S. (2010). Rational prediction of punching shear strength of slabs reinforced with steel or FRP bars. Magazine of Concrete Research, 62(11), 821–830. doi:10.1680/macr.2010.62.11.821.
Hassan, M., Ahmed, E. A., & Benmokrane, B. (2015). Punching Shear Behavior of Two-Way Slabs Reinforced with FRP Shear Reinforcement. Journal of Composites for Construction, 19(1). doi:10.1061/(asce)cc.1943-5614.0000493.
Hassan, M., Ahmed, E., & Benmokrane, B. (2013). Punching-Shear Strength of Normal and High-Strength Two-Way Concrete Slabs Reinforced with GFRP Bars. Journal of Composites for Construction, 17(6), 4013003. doi:10.1061/(asce)cc.1943-5614.0000424.
Zhang, Q., Marzouk, H., & Hussein, A. (2005). A preliminary study of high-strength concrete two-way slabs reinforced with GFRP bars. Proceedings of the 33rd CSCE annual conference: general conference and international history symposium, 2-4 June, 2005, Toronto, Canada.
Hussein, A. H., & El-Salakawy, E. F. (2018). Punching shear behavior of glass fiber-reinforced polymer-reinforced concrete slab-column interior connections. ACI Structural Journal, 115(4), 1075–1088. doi:10.14359/51702134.
Xu, W., & Shi, X. (2024). Machine-Learning-Based Predictive Models for Punching Shear Strength of FRP-Reinforced Concrete Slabs: A Comparative Study. Buildings, 14(8), 2492. doi:10.3390/buildings14082492.
Alateyat, A., Awad, R., Ibrahim, B., Junaid, M. T., Altoubat, S., Maalej, M., & Barakat, S. (2024). Punching shear strength of fiber-reinforced polymer concrete slabs: Database-driven assessment of parameters and prediction models. Engineering Structures, 315, 118511. doi:10.1016/j.engstruct.2024.118511.
Madkour, H., Maher, M., & Ali, O. (2022). Finite element analysis for interior slab-column connections reinforced with GFRP bars using damage plasticity model. Journal of Building Engineering, 48, 104013. doi:10.1016/j.jobe.2022.104013.
Al-Rousan, R. Z., Alhassan, M., & Al-wadi, R. (2020). Nonlinear finite element analysis of full-scale concrete bridge deck slabs reinforced with FRP bars. Structures, 27, 1820–1831. doi:10.1016/j.istruc.2020.08.024.
ASTM D8505/D8505M-23. (2023). Standard Specification for Basalt and Glass Fiber Reinforced Polymer (FRP) Bars for Concrete Reinforcement. ASTM International, Pennsylvania, United States. doi:10.1520/D8505_D8505M-23.
ABAQUS. (2014). Abaqus analysis user’s guide. Dassault Systèmes, Vélizy-Villacoublay, France.
Voyiadjis, G. Z., & Taqieddin, Z. N. (2009). Elastic plastic and damage model for concrete materials: Part I-theoretical formulation. The International Journal of Structural Changes in Solids, 1(1), 31-59.
Jankowiak, T., & Lodygowski, T. (2005). Identification of parameters of concrete damage plasticity constitutive model. Foundations of civil and environmental engineering, 6(1), 53-69.
Vojdan, B. M., & Aghayari, R. (2017). Investigating the seismic behavior of RC shear walls with openings strengthened with FRP sheets using different schemes. Scientia Iranica, 24(4), 1855–1865. doi:10.24200/sci.2017.4276.
Ren, W., Sneed, L. H., Yang, Y., & He, R. (2015). Numerical Simulation of Prestressed Precast Concrete Bridge Deck Panels Using Damage Plasticity Model. International Journal of Concrete Structures and Materials, 9(1), 45–54. doi:10.1007/s40069-014-0091-2.
Surumi, R. S., Jaya, K. P., & Greeshma, S. (2015). Modelling and Assessment of Shear Wall–Flat Slab Joint Region in Tall Structures. Arabian Journal for Science and Engineering, 40(8), 2201–2217. doi:10.1007/s13369-015-1720-z.
Nguyen, Q. T., & Livaoğlu, R. (2020). The effect of the ratio of Λ-shaped shear connectors on the flexural behavior of a reinforced concrete frame. Advances in Structural Engineering, 23(12), 2724–2740. doi:10.1177/1369433220920442.
Popovics, S. (1973). A numerical approach to the complete stress-strain curve of concrete. Cement and Concrete Research, 3(5), 583–599. doi:10.1016/0008-8846(73)90096-3.
Hsu, L. S., & Hsu, C. T. T. (1994). Complete stress – strain behaviour of high-strength concrete under compression. Magazine of Concrete Research, 46(169), 301–312. doi:10.1680/macr.1994.46.169.301.
Cornelissen, H. A. W., Hordijk, D. A., & Reinhardt, H. W. (1986). Post-Peak Tensile Behaviour of Lightweight versus Normal-Weight Concrete. Brittle Matrix Composites 1, 1, 509–525. doi:10.1007/978-94-009-4319-3_34.
Genikomsou, A. S., & Polak, M. A. (2015). Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS. Engineering Structures, 98, 38–48. doi:10.1016/j.engstruct.2015.04.016.
Carreira, D. J., & Chu, K. H. (1986). Stress-Strain Relationship for Reinforced Concrete in Tension. Journal of the American Concrete Institute, 83(1), 21–28. doi:10.14359/1756.
Demissie, G. A., & Aure, T. W. (2022). Numerical analysis of GFRP-reinforced flat slab–column edge connection subjected to gravity and lateral loads. Asian Journal of Civil Engineering, 23(5), 765–783. doi:10.1007/s42107-022-00456-6.
Al-Mamoori, A. H. N. (2015). Investigation the punching shear behavior of reinforced concrete slab-column connection using carbon fiber reinforced polymers. Al-Qadisiya Journal for Engineering Science, 8(1), 38-58.
Benmokrane, B., Masmoudi, R., & El-Salakawy, E. (2004). Designing and testing of a concrete bridge deck reinforced with glass FRP bars. International SAMPE Technical Conference, 11(2), 2815–2828. doi:10.1061/(asce)1084-0702(2006)11:2(217).
DOI: 10.28991/CEJ-SP2024-010-017
Refbacks
Copyright (c) 2024 Aroob Alateyat, Samer Barakat, M. Talha Junaid, Salah Altoubat, Mohamed Maalej, Raghad Awad

This work is licensed under a Creative Commons Attribution 4.0 International License.