Experimental and Numerical Analysis of Punching Shear of GFRP-RC Slabs
Downloads
Doi: 10.28991/CEJ-SP2024-010-017
Full Text: PDF
Downloads
[2] Benmokrane, B., Ahmed, E., Dulude, C., & Boucher, E. (2012). Design, construction, and monitoring of the first worldwide two-way flat slab parking garage reinforced with GFRP bars. Proceedings of the International conference on Composites in Civil Engineering CICE, 13-15 June, Rome, Italy.
[3] Salama, A. E., Hassan, M., Benmokrane, B., & Ferrier, E. (2020). Modified strip model for punching-shear strength of FRP-reinforced concrete edge–column slab connections. Engineering Structures, 216, 110769. doi:10.1016/j.engstruct.2020.110769.
[4] Nguyen-Minh, L., & RovŠˆák, M. (2013). Punching Shear Resistance of Interior GFRP Reinforced Slab-Column Connections. Journal of Composites for Construction, 17(1), 2–13. doi:10.1061/(asce)cc.1943-5614.0000324.
[5] Ju, M., Park, K., & Park, C. (2018). Punching shear behavior of two-way concrete slabs reinforced with glass-fiber-reinforced polymer (GFRP) bars. Polymers, 10(8), 893. doi:10.3390/polym10080893.
[6] Duan, N., & Zhang, J. (2024). The Impact of Reinforcement Ratio on the Punching Shear of CFRP Grid-Reinforced Concrete Two-Way Slabs. Materials, 17(22), 5576. doi:10.3390/ma17225576.
[7] Talha Junaid, M., Awad, R., Barakat, S., & Metawa, A. (2024). Effect of column dimension on the punching shear capacity of concrete slabs reinforced with GFRP bars. E3S Web of Conferences, 586, 4003. doi:10.1051/e3sconf/202458604003.
[8] Alkhattabi, L., Ayash, N. M., Hassan, M., & Gouda, A. (2024). Investigation of Key Parameters Influencing Shear Behavior in Glass-Fiber-Reinforced Polymer (GFRP)-Reinforced Concrete (RC) Interior Slab–Column Connections. Buildings, 14(5), 1251. doi:10.3390/buildings14051251.
[9] ACI Code-440.11-22. (2022). Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute (ACI), Michigan, United States.
[10] CSA S806-12. (2012). Design and Construction of Building Structures with Fiber Reinforced Polymers. Canadian Standards Association (CSA), Toronto, Canada.
[11] JSCE. (19997). Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials. Japan Society of Civil Engineers (JSCE), Tokyo, Japan.
[12] Lee, J. H., Yang, J. M., & Yoon, Y. S. (2010). Rational prediction of punching shear strength of slabs reinforced with steel or FRP bars. Magazine of Concrete Research, 62(11), 821–830. doi:10.1680/macr.2010.62.11.821.
[13] Hassan, M., Ahmed, E. A., & Benmokrane, B. (2015). Punching Shear Behavior of Two-Way Slabs Reinforced with FRP Shear Reinforcement. Journal of Composites for Construction, 19(1). doi:10.1061/(asce)cc.1943-5614.0000493.
[14] Hassan, M., Ahmed, E., & Benmokrane, B. (2013). Punching-Shear Strength of Normal and High-Strength Two-Way Concrete Slabs Reinforced with GFRP Bars. Journal of Composites for Construction, 17(6), 4013003. doi:10.1061/(asce)cc.1943-5614.0000424.
[15] Zhang, Q., Marzouk, H., & Hussein, A. (2005). A preliminary study of high-strength concrete two-way slabs reinforced with GFRP bars. Proceedings of the 33rd CSCE annual conference: general conference and international history symposium, 2-4 June, 2005, Toronto, Canada.
[16] Hussein, A. H., & El-Salakawy, E. F. (2018). Punching shear behavior of glass fiber-reinforced polymer-reinforced concrete slab-column interior connections. ACI Structural Journal, 115(4), 1075–1088. doi:10.14359/51702134.
[17] Xu, W., & Shi, X. (2024). Machine-Learning-Based Predictive Models for Punching Shear Strength of FRP-Reinforced Concrete Slabs: A Comparative Study. Buildings, 14(8), 2492. doi:10.3390/buildings14082492.
[18] Alateyat, A., Awad, R., Ibrahim, B., Junaid, M. T., Altoubat, S., Maalej, M., & Barakat, S. (2024). Punching shear strength of fiber-reinforced polymer concrete slabs: Database-driven assessment of parameters and prediction models. Engineering Structures, 315, 118511. doi:10.1016/j.engstruct.2024.118511.
[19] Madkour, H., Maher, M., & Ali, O. (2022). Finite element analysis for interior slab-column connections reinforced with GFRP bars using damage plasticity model. Journal of Building Engineering, 48, 104013. doi:10.1016/j.jobe.2022.104013.
[20] Al-Rousan, R. Z., Alhassan, M., & Al-wadi, R. (2020). Nonlinear finite element analysis of full-scale concrete bridge deck slabs reinforced with FRP bars. Structures, 27, 1820–1831. doi:10.1016/j.istruc.2020.08.024.
[21] ASTM D8505/D8505M-23. (2023). Standard Specification for Basalt and Glass Fiber Reinforced Polymer (FRP) Bars for Concrete Reinforcement. ASTM International, Pennsylvania, United States. doi:10.1520/D8505_D8505M-23.
[22] ABAQUS. (2014). Abaqus analysis user's guide. Dassault Systèmes, Vélizy-Villacoublay, France.
[23] Voyiadjis, G. Z., & Taqieddin, Z. N. (2009). Elastic plastic and damage model for concrete materials: Part I-theoretical formulation. The International Journal of Structural Changes in Solids, 1(1), 31-59.
[24] Jankowiak, T., & Lodygowski, T. (2005). Identification of parameters of concrete damage plasticity constitutive model. Foundations of civil and environmental engineering, 6(1), 53-69.
[25] Vojdan, B. M., & Aghayari, R. (2017). Investigating the seismic behavior of RC shear walls with openings strengthened with FRP sheets using different schemes. Scientia Iranica, 24(4), 1855–1865. doi:10.24200/sci.2017.4276.
[26] Ren, W., Sneed, L. H., Yang, Y., & He, R. (2015). Numerical Simulation of Prestressed Precast Concrete Bridge Deck Panels Using Damage Plasticity Model. International Journal of Concrete Structures and Materials, 9(1), 45–54. doi:10.1007/s40069-014-0091-2.
[27] Surumi, R. S., Jaya, K. P., & Greeshma, S. (2015). Modelling and Assessment of Shear Wall–Flat Slab Joint Region in Tall Structures. Arabian Journal for Science and Engineering, 40(8), 2201–2217. doi:10.1007/s13369-015-1720-z.
[28] Nguyen, Q. T., & Livaoğlu, R. (2020). The effect of the ratio of Λ-shaped shear connectors on the flexural behavior of a reinforced concrete frame. Advances in Structural Engineering, 23(12), 2724–2740. doi:10.1177/1369433220920442.
[29] Popovics, S. (1973). A numerical approach to the complete stress-strain curve of concrete. Cement and Concrete Research, 3(5), 583–599. doi:10.1016/0008-8846(73)90096-3.
[30] Hsu, L. S., & Hsu, C. T. T. (1994). Complete stress – strain behaviour of high-strength concrete under compression. Magazine of Concrete Research, 46(169), 301–312. doi:10.1680/macr.1994.46.169.301.
[31] Cornelissen, H. A. W., Hordijk, D. A., & Reinhardt, H. W. (1986). Post-Peak Tensile Behaviour of Lightweight versus Normal-Weight Concrete. Brittle Matrix Composites 1, 1, 509–525. doi:10.1007/978-94-009-4319-3_34.
[32] Genikomsou, A. S., & Polak, M. A. (2015). Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS. Engineering Structures, 98, 38–48. doi:10.1016/j.engstruct.2015.04.016.
[33] Carreira, D. J., & Chu, K. H. (1986). Stress-Strain Relationship for Reinforced Concrete in Tension. Journal of the American Concrete Institute, 83(1), 21–28. doi:10.14359/1756.
[34] Demissie, G. A., & Aure, T. W. (2022). Numerical analysis of GFRP-reinforced flat slab–column edge connection subjected to gravity and lateral loads. Asian Journal of Civil Engineering, 23(5), 765–783. doi:10.1007/s42107-022-00456-6.
[35] Al-Mamoori, A. H. N. (2015). Investigation the punching shear behavior of reinforced concrete slab-column connection using carbon fiber reinforced polymers. Al-Qadisiya Journal for Engineering Science, 8(1), 38-58.
[36] Benmokrane, B., Masmoudi, R., & El-Salakawy, E. (2004). Designing and testing of a concrete bridge deck reinforced with glass FRP bars. International SAMPE Technical Conference, 11(2), 2815–2828. doi:10.1061/(asce)1084-0702(2006)11:2(217).
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.