Natural Frequency of Liquefaction Potential Based on Soil Investigation and Microtremor Observation Results
Downloads
This study aims to identify the natural frequency threshold for liquefaction potential by comparing four assessment methods at 54 identical sites in Padang, Indonesia. Methods include: (1) safety factor calculations from soil investigation results (CPT and SPT) applying the 2009 Padang earthquake's peak ground acceleration as input for cycling stress ratio; (2) natural frequency measurements at the surface using microtremor single observations; (3) liquefaction potential assessment through vulnerability index; and (4) analysis of historical liquefaction events from the September 30, 2009 Padang earthquake documented in two previous research papers. The analysis focused on soil depths ranging from 1-4 m. Findings reveal that sites with natural frequencies exceeding 0.40 Hertz remain safe from liquefaction, while sites with frequencies between 0.20-0.39 Hertz demonstrate significant liquefaction potential. This research contributes to the field by establishing a clear correlation between measurable natural frequency thresholds and liquefaction risk, providing engineers and urban planners with a more accessible parameter for preliminary risk assessment. Integrating multiple assessment methods at identical sites enhances the reliability of the identified frequency thresholds, offering a more comprehensive approach to liquefaction hazard mitigation in earthquake-prone regions.
Downloads
[1] Daniell, J. E., Khazai, B., Wenzel, F., & Vervaeck, A. (2011). The CATDAT damaging earthquakes database. Natural Hazards and Earth System Science, 11(8), 2235–2251. doi:10.5194/nhess-11-2235-2011.
[2] Putra, R. R., Kiyono, J., & Furukawa, A. (2014). Vulnerability assessment of non-engineered houses based on damage data of the 2009 padang earthquake in Padang city, Indonesia. International Journal of GEOMATE, 7(2), 1076–1083. doi:10.21660/2014.14.140714.
[3] Putra, R. R., Ono, Y., Syah, N., & Cantika, A. A. (2021). Seismic performance evaluation of existing building in earthquake prone area based on seismic index and seismic demand method. Civil Engineering and Architecture, 9(4), 1237–1245. doi:10.13189/cea.2021.090425.
[4] Iskandar, A., Rifa’i, A., & Hardiyatmo, H. C. (2024). the Influence of Earthquake Significant Duration on Liquefaction Potential in Area Pasar Raya Padang. International Journal of GEOMATE, 27(123), 100–107. doi:10.21660/2024.123.4687.
[5] Hakam, A., Adji, B. M., Junaidi, & Risayanti, B. M. (2018). Liquefaction analysis of abrasion protection structure in Padang. MATEC Web of Conferences, 229, 1018. doi:10.1051/matecconf/201822901018.
[6] Tohari, A., Sugianti, K., & Soebowo, E. (2011). Liquefaction Potential at Padang City: a Comparison of Predicted and Observed Liquefactions during the 2009 Padang Earthquake. Journal of Geology and Mining Research, 21(1), 7. doi:10.14203/risetgeotam2011.v21.42.
[7] Rezaei, S., & Choobbasti, A. J. (2014). Liquefaction assessment using microtremor measurement, conventional method and artificial neural network (Case study: Babol, Iran). Frontiers of Structural and Civil Engineering, 8(3), 292–307. doi:10.1007/s11709-014-0256-8.
[8] Unjoh, S., Kaneko, M., Kataoka, S., Nagaya, K., & Matsuoka, K. (2012). Effect of earthquake ground motions on soil liquefaction. Soils and Foundations, 52(5), 830–841. doi:10.1016/j.sandf.2012.11.006.
[9] Ghani, S., Kumari, S., & Bardhan, A. (2021). A novel liquefaction study for fine-grained soil using PCA-based hybrid soft computing models. Sadhana - Academy Proceedings in Engineering Sciences, 46(3), 113. doi:10.1007/s12046-021-01640-1.
[10] Muhammad, N. B., Namdar, A., & Zakaria, I. Bin. (2013). Liquefaction mechanisms and mitigation-a review. Research Journal of Applied Sciences, Engineering and Technology, 5(2), 574–567. doi:10.19026/rjaset.5.4992.
[11] Wei, X., Zhuang, Y., Yang, J., & Zhang, L. (2024). Excess pore pressure generation in silty sands subjected to cyclic triaxial loading. Japanese Geotechnical Society Special Publication, 10(17), 552-557.
[12] Jalil, A., Fathani, T. F., Satyarno, I., & Wilopo, W. (2021). Liquefaction in Palu: the cause of massive mudflows. Geoenvironmental Disasters, 8(1), 21. doi:10.1186/s40677-021-00194-y.
[13] Bozzoni, F., Bonì, R., Conca, D., Lai, C. G., Zuccolo, E., & Meisina, C. (2021). Megazonation of earthquake-induced soil liquefaction hazard in continental Europe. Bulletin of Earthquake Engineering, 19(10), 4059–4082. doi:10.1007/s10518-020-01008-6.
[14] Pokhrel, R. M., Gilder, C. E. L., Vardanega, P. J., De Luca, F., De Risi, R., Werner, M. J., & Sextos, A. (2022). Liquefaction potential for the Kathmandu Valley, Nepal: a sensitivity study. Bulletin of Earthquake Engineering, 20(1), 25–51. doi:10.1007/s10518-021-01198-7.
[15] Sonmezer, Y. B. (2019). Energy-based evaluation of liquefaction potential of uniform sands. Geomechanics and Engineering, 17(2), 145–156. doi:10.12989/gae.2019.17.2.145.
[16] Bensoula, M., Bousmaha, M., & Missoum, H. (2022). Relative density influence on the liquefaction potential of sand with fines. Revista de La Construccion, 21(3), 692–702. doi:10.7764/RDLC.21.3.692.
[17] Bray, J. D., & Dashti, S. (2014). Liquefaction-induced building movements. Bulletin of Earthquake Engineering, 12(3), 1129–1156. doi:10.1007/s10518-014-9619-8.
[18] Lai, C. G., Bozzoni, F., Conca, D., Famà, A., Özcebe, A. G., Zuccolo, E., Meisina, C., Bonì, R., Bordoni, M., Cosentini, R. M., Martelli, L., Poggi, V., Viana da Fonseca, A., Ferreira, C., Rios, S., Cordeiro, D., Ramos, C., Molina-Gómez, F., Coelho, C., … Kelesoglu, M. K. (2021). Technical guidelines for the assessment of earthquake induced liquefaction hazard at urban scale. Bulletin of Earthquake Engineering, 19(10), 4013–4057. doi:10.1007/s10518-020-00951-8.
[19] Ng, C. W. W., Crous, P. A., Zhang, M., & Shakeel, M. (2022). Static liquefaction mechanisms in loose sand fill slopes. Computers and Geotechnics, 141, 104525. doi:10.1016/j.compgeo.2021.104525.
[20] Boulanger, R. W., & Idriss, I. M. (2008). Closure to “Liquefaction Susceptibility Criteria for Silts and Clays” by Ross W. Boulanger and I. M. Idriss. Journal of Geotechnical and Geoenvironmental Engineering, 134(7), 1027–1028. doi:10.1061/(asce)1090-0241(2008)134:7(1027).
[21] Seed, H. B., & Idriss, I. M. (1971). Simplified Procedure for Evaluating Soil Liquefaction Potential. Journal of the Soil Mechanics and Foundations Division, 97(9), 1249–1273. doi:10.1061/jsfeaq.0001662.
[22] Tsai, C. C., & Li, P. C. (2024). Quantifying near-fault motion effects on soil liquefaction through effective stress site response analysis. Soil Dynamics and Earthquake Engineering, 183, 108779. doi:10.1016/j.soildyn.2024.108779.
[23] Yıldız, Ö., Zeybek, A., & Sönmezer, Y. B. (2024). Investigation of the earthquake-induced liquefaction and seismic amplifications after Pazarcık (Mw 7.7) and Elbistan (Mw 7.6) earthquakes. Environmental Earth Sciences, 83(21). doi:10.1007/s12665-024-11921-7.
[24] Putra, R. R. (2017). Estimation of VS30 based on soil investigation by using microtremor observation in Padang, Indonesia. International Journal of GEOMATE, 13(38), 135–140. doi:10.21660/2017.38.tvet030.
[25] Pramono, P., Widjaja, B., Herina, S., Lestari, A. S., Lim, A., Rustiani, S., ... & Hapsari, V. (2014). Geotechnical Study of Infrastructure for Padang City Facing the Threat of Earthquakes and Tsunamis. Research Report - Engineering Science, 1-58. (In Indonesian).
[26] Basu, D., Montgomery, J., & Stuedlein, A. W. (2022). Observations and challenges in simulating post-liquefaction settlements from centrifuge and shake table tests. Soil Dynamics and Earthquake Engineering, 153. doi:10.1016/j.soildyn.2021.107089.
[27] Sukkarak, R., Tanapalungkorn, W., Likitlersuang, S., & Ueda, K. (2021). Liquefaction analysis of sandy soil during strong earthquake in Northern Thailand. Soils and Foundations, 61(5), 1302–1318. doi:10.1016/j.sandf.2021.07.003.
[28] Wang, J., Ge, X., Sun, J., Liu, Y., Shang, Z., Wang, Z., & Tian, M. (2023). Dynamic response analysis of liquefiable ground due to sinusoidal waves of different frequencies of shield construction. Earthquake Engineering and Engineering Vibration, 22(3), 637–646. doi:10.1007/s11803-023-2192-x.
[29] Widiyantoro, S., Gunawan, E., Muhari, A., Rawlinson, N., Mori, J., Hanifa, N. R., ... & Putra, H. E. (2020). Implications for megathrust earthquakes and tsunamis from seismic gaps south of Java Indonesia. Scientific Reports, 10(1), 15274. doi:10.1038/s41598-020-72142-z.
[30] Putra, R. R. (2020). Damage investigation and re-analysis of damaged building affected by the ground motion of the 2009 Padang earthquake. International Journal of GEOMATE, 18(66), 163–170. doi:10.21660/2020.66.Icee2nd.
[31] Boumpoulis, V., Depountis, N., Pelekis, P., & Sabatakakis, N. (2021). SPT and CPT application for liquefaction evaluation in Greece. Arabian Journal of Geosciences, 14(16), 1–15. doi:10.1007/s12517-021-08103-1.
[32] Youd, T. L., & Idriss, I. M. (1997). Proceeding of the NCEER workshop on evaluation of liquefaction resistance of soils. Technical Report NCEER-97-0022.
[33] Sonmez, H., & Gokceoglu, C. (2005). A liquefaction severity index suggested for engineering practice. Environmental Geology, 48(1), 81–91. doi:10.1007/s00254-005-1263-9.
[34] Robertson, P. K., & Wride, C. E. (1998). Evaluating cyclic liquefaction potential using the cone penetration test. Canadian Geotechnical Journal, 35(3), 442–459. doi:10.1139/t98-017.
[35] Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30(1), 25-33.
[36] Nakamura, Y. (2000). Clear identification of fundamental idea of Nakamura’s technique and its applications. Proceedings of the 12th world conference on earthquake engineering, 30 January-4 February 2000, Auckland, New Zealand.
[37] Li, C. Y., Wu, J. H., Lee, D. H., & Chen, K. Y. (2021). Investigating the Ground Characteristics Using HVSR Curves with Microtremor Measurements: The Urban Area in Tainan. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 33(2), 125–138. doi:10.6652/JoCICHE.202104_33(2).0005.
[38] Rezaei, S., & Choobbasti, A. J. (2017). Application of the microtremor measurements to a site effect study. Earthquake Science, 30(3), 157–164. doi:10.1007/s11589-017-0187-2.
[39] Bonnefoy-Claudet, S., Cotton, F., & Bard, P. Y. (2006). The nature of noise wavefield and its applications for site effects studies. A literature review. Earth-Science Reviews, 79(3–4), 205–227. doi:10.1016/j.earscirev.2006.07.004.
[40] SESAME. (2004). Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations: Measurements, Processing and Interpretation. SESAME European Research Project WP12, 1-62.
[41] Kennedy, C. (2024). Shear Wave Velocity as a Measure of the Dynamic Properties of Confined Silty Soil. Research Square (Preprint), 1-12. doi:10.21203/rs.3.rs-4337341/v1.
[42] Karagianni, E. E., Papazachos, C. B., Panagiotopoulos, D. G., Suhadolc, P., Vuan, A., & Panza, G. F. (2004). Shear velocity structure in the Aegean area obtained by inversion of Rayleigh waves. Geophysical Journal International, 160(1), 127–143. doi:10.1111/j.1365-246x.2005.02354.x.
[43] Torsvik, T. H., Rousse, S., Labails, C., & Smethurst, M. A. (2009). A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophysical Journal International, 177(3), 1315-1333. doi:10.1111/j.1365-246X.2009.04137.x.
[44] Liang, D., Gan, F., Zhang, W., & Jia, L. (2018). The application of HVSR method in detecting sediment thickness in karst collapse area of Pearl River Delta, China. Environmental earth sciences, 77(6), 259. doi:10.1007/s12665-018-7439-x.
[45] Nakamura, Y. (1997). Seismic vulnerability indices for ground and structures using microtremor. World Congress on Railway Research, November 1997, Florence, Italy.
[46] Xu, C., Yue, C., Du, X., Liang, K., Wang, B., & Chen, G. (2025). Experimental study on the influence of cyclic loading frequency on liquefaction characteristics of saturated sand. Géotechnique, 75(4), 501–514. doi:10.1680/jgeot.21.00384.
[47] Choobbasti, A. J., Naghizadehrokni, M., & Rezaei, S. (2015). Liquefaction assessment by microtremor measurements in Babol city. In Fifth International Conference on Geotechnique, Construction Materials and Environment, 16-18 November, 2015, Osaka, Japan.
[48] Yuan, X., Sun, R., Chen, L., & Tang, F. (2010). A method for detecting site liquefaction by seismic records. Soil Dynamics and Earthquake Engineering, 30(4), 270–279. doi:10.1016/j.soildyn.2009.12.003.
[49] Zhu, Z., Zhang, F., Peng, Q., Dupla, J.-C., Canou, J., Cumunel, G., & Foerster, E. (2021). Effect of the loading frequency on the sand liquefaction behaviour in cyclic triaxial tests. Soil Dynamics and Earthquake Engineering, 147, 106779. doi:10.1016/j.soildyn.2021.106779.
[50] Sitharam, T. G., GovindaRaju, L., & Sridharan, A. (2004). Dynamic properties and liquefaction potential of soils. Current Science, 87(10), 1370–1378.
[51] Chang, N.-Y., Hsieh, N.-P., Samuelson, D. L., & Horita, M. (1982). Effect of Frequency on Liquefaction Potential of Saturated Monterey No. O Sand. Computational Methods and Experimental Measurements, 433–446, Springer, Berlin, Germany. doi:10.1007/978-3-662-11353-0_34.
[52] Jahankhah, H., & Farashahi, P. F. (2017). The effect of foundation embedment on net horizontal foundation input motion: the case of strip foundation with incomplete contact to nearby medium. Soil Dynamics and Earthquake Engineering, 96, 35-48. doi:10.1016/j.soildyn.2017.02.015.
[53] Mehrzad, B., Jafarian, Y., Lee, C. J., & Haddad, A. H. (2018). Centrifuge study into the effect of liquefaction extent on permanent settlement and seismic response of shallow foundations. Soils and foundations, 58(1), 228-240. doi:10.1016/j.sandf.2017.12.006.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.