Stability Analysis of Dike Pond Due to Pore-Water Pressure Changes
Downloads
The Brigif retention pond not only serves to temporarily store rainwater for groundwater reserving but also reduces the risk of flooding in the Southern Jakarta area. Research was purposed to study two critical conditions of a dike made from clayey material from before to after water impounding stages correlating with its stability. The research will investigate pore-water pressure (u) parameter changes at any stage in both conditions. The parameter of (u) can be predicted (upre) using the laboratory consolidation or oedometer test and measured (uact) completely with hydrostatic pressure (u0) directly in the field. Actual measurements using a piezometer were also conducted on the body of the dike. The prediction analysis used the self-developed program and conventional geotechnical software. The critical peak depth of (u) was found at 3.0 to 4.0 m. The actual settlement potential values reached -0.10 to -1.42 m and matched the prediction result. Safety factor (SF) was around 2.0 to 4.0, or in stable condition. Research results found that the magnitude parameter of (u) could be influenced by groundwater flow and porosity or void ratio fluctuations. The consolidation process also would affect the physical soil pore, contributing to the change of (SF) the dike pond.
Downloads
[1] Sibiryakov, B., Leite, L. W. B., & Sibiriakov, E. (2021). Porosity, specific surface area and permeability in porous media. Journal of Applied Geophysics, 186, 104261. doi:10.1016/j.jappgeo.2021.104261.
[2] Residori, M., Mandal, S., Voigt, A., & Kurzthaler, C. (2025). Flow through porous media at the percolation transition. Physical Review Research, 7(1), 12032. doi:10.1103/PhysRevResearch.7.L012032.
[3] Ribolzi, O., Patin, J., Bresson, L. M., Latsachack, K. O., Mouche, E., Sengtaheuanghoung, O., Silvera, N., Thiébaux, J. P., & Valentin, C. (2011). Impact of slope gradient on soil surface features and infiltration on steep slopes in northern Laos. Geomorphology, 127(1–2), 53–63. doi:10.1016/j.geomorph.2010.12.004.
[4] Ventini, R., Dodaro, E., Gragnano, C. G., Giretti, D., & Pirone, M. (2021). Experimental and numerical investigations of a river embankment model under transient seepage conditions. Geosciences (Switzerland), 11(5), 192. doi:10.3390/geosciences11050192.
[5] Yun, S. K., Kim, J., Im, E. S., & Kang, G. (2022). Behavior of Porewater Pressures in an Earth Dam by Principal Component Analysis. Water (Switzerland), 14(4), 672. doi:10.3390/w14040672.
[6] Seyed-Kolbadi, S. M., Hariri-Ardebili, M. A., Mirtaheri, M., & Pourkamali-Anaraki, F. (2020). Instrumented health monitoring of an earth dam. Infrastructures, 5(3), 26. doi:10.3390/infrastructures5030026.
[7] Liu, W., & Zhao, Y. (2019). Research on the pore water pressure of submerged dike structure. IOP Conference Series: Earth and Environmental Science, 358(2), 22019. doi:10.1088/1755-1315/358/2/022019.
[8] Robertson, P. K. (2009). Interpretation of cone penetration tests — a unified approach. Canadian Geotechnical Journal, 46(11), 1337–1355. doi:10.1139/t09-065.
[9] Chang, W. J., Chou, S. H., Huang, H. P., & Chao, C. Y. (2021). Development and verification of coupled hydro-mechanical analysis for rainfall-induced shallow landslides. Engineering Geology, 293, 106337. doi:10.1016/j.enggeo.2021.106337.
[10] Al-Omari, A. A., Shatnawi, N. N., Shbeeb, N. I., Istrati, D., Lagaros, N. D., & Abdalla, K. M. (2024). Utilizing Remote Sensing and GIS Techniques for Flood Hazard Mapping and Risk Assessment. Civil Engineering Journal, 10(5), 1423–1436. doi:10.28991/CEJ-2024-010-05-05.
[11] Hasan, M. F. R., Susilo, A., Suryo, E. A., Agung, P. A. M., Idmi, M. H., Suaidi, D. A., & Aprilia, F. (2024). Mapping of Landslide Potential in Payung, Batu City, Indonesia, Using Global Gravity Model Plus (GGMplus) Data as Landslide Mitigation. Iraqi Geological Journal, 57(1), 159–168. doi:10.46717/igj.57.1A.13ms-2024-1-24.
[12] Koponen, A., Kataja, M., & Timonen, J. (1997). Permeability and effective porosity of porous media. Physical Review E, 56(3), 3319–3325. doi:10.1103/physreve.56.3319.
[13] Gui, M. W., & Wu, Y. M. (2014). Failure of soil under water infiltration condition. Engineering Geology, 181, 124–141. doi:10.1016/j.enggeo.2014.07.005.
[14] Turkandi, T., Sidarto, Agustiyanto, D. A., & Purbo, H. M. M. (1992). Geologic Map of Jakarta and Kepulauan Seribu Quadrangles, Jawa. Geological Research and Development Centre, Bandung, Indonesia.
[15] Huat, B. B., Ali, F. H., & Abdullah, A. (2005). Shear strength parameters of unsaturated tropical residual soils of various weathering grades. Electronic Journal of Geotechnical Engineering, 10(6), 1-16.
[16] Cevasco, A., Pepe, G., & Brandolini, P. (2014). The influences of geological and land use settings on shallow landslides triggered by an intense rainfall event in a coastal terraced environment. Bulletin of Engineering Geology and the Environment, 73(3), 859–875. doi:10.1007/s10064-013-0544-x.
[17] Merdassa, S., Garo, T., Chemeda, Y. C., Karuppannan, S., & Tesfaye, M. (2024). Engineering geological investigation of Gololcha dam for evaluation of leakage and abutment slope stability, Eastern Ethiopia. Scientific African, 26, 2381. doi:10.1016/j.sciaf.2024.e02381.
[18] Kabeta, W. F., Tamiru, M., Tsige, D., & Ware, H. (2023). An integrated geotechnical and geophysical investigation of landslide in Chira town, Ethiopia. Heliyon, 9(7), 17620. doi:10.1016/j.heliyon.2023.e17620.
[19] Durgunoglu, H. T., & Mitchell, J. K. (1973). Static penetration resistance of soils (No. SSL-SER-14-ISSUE-24). Contractor Report (CR), University of California, Berkeley, United States.
[20] Kumar, R., Bhargava, K., & Choudhury, D. (2016). Estimation of Engineering Properties of Soils from Field SPT Using Random Number Generation. INAE Letters, 1(3–4), 77–84. doi:10.1007/s41403-016-0012-6.
[21] Robertson, P. K., & Cabal, K. L. (2010). Estimating soil unit weight from CPT. 2nd International symposium on cone penetration testing. 9-11 May, 2010, Huntington Beach, United States.
[22] Agung, P. A. M., Sultan, R., Idris, M., Sudjianto, A. T., Ahmad, M. A., & Hasan, M. F. R. (2023). Probabilistic of in Situ Seismic Soil Liquefaction Potential Based on CPT-Data in Central Jakarta, Indonesia. International Journal of Sustainable Construction Engineering and Technology, 14(1), 241–248. doi:10.30880/ijscet.2023.14.01.021.
[23] Zhou, J., & Qin, C. (2022). Stability analysis of unsaturated soil slopes under reservoir drawdown and rainfall conditions: steady and transient state analysis. Computers and Geotechnics, 142, 104541. doi:10.1016/j.compgeo.2021.104541.
[24] Balasubramaniam, A. S., & Brenner, R. P. (1981). Consolidation and Settlement of Soft Clay. Developments in Geotechnical Engineering, 479–566, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-444-41784-8.50010-1.
[25] Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice. John Wiley & Sons, Hoboken, United States.
[26] Lee, P. K. K., Xie, K. H., & Cheung, Y. K. (1992). A study on one‐dimensional consolidation of layered systems. International Journal for Numerical and Analytical Methods in Geomechanics, 16(11), 815–831. doi:10.1002/nag.1610161104.
[27] Ayub Khan, P., Madhav, M. R., & Saibaba Reddy, E. (2010). Consolidation of thick clay layer by radial flow - non-linear theory. Geomechanics and Engineering, 2(2), 157–160. doi:10.12989/gae.2010.2.2.157.
[28] Ying, H., Zhang, L., Xie, K., & Huang, D. (2015). Pore Pressure Response to Groundwater Fluctuations in Saturated Double-Layered Soil. Mathematical Problems in Engineering, 2015, 389089. doi:10.1155/2015/389089.
[29] ASTM D2435-04. (2011). Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading. ASTM International, Pennsylvania, United States. doi:10.1520/D2435-04.
[30] Taylor, D. W. (1984). Fundamentals of soil mechanics. John Wiley & Sons, Inc., New York, United States.
[31] Francesco, R. Di. (2013). Exact Solution of Terzaghi’s Consolidation Equation and Extension to Two/Three-Dimensional Cases. Applied Mathematics, 04(04), 713–717. doi:10.4236/am.2013.44099.
[32] Al Siaede, R. S. (2019). A practical geotechnical analysis of in situ stress variations and hydraulic stability of small weirs using SEEP/W and SIGMA/W simulation. Iraqi Journal of Science, 60(11), 2457–2467. doi:10.24996/ijs.2019.60.11.16.
[33] Krishnan, A., & Kolathayar, S. (2020). Stability Analysis of Dike to Impound Freshwater in Brackish Water Estuarine Environment. The Open Construction and Building Technology Journal, 14(1), 139–149. doi:10.2174/1874836802014010139.
[34] Wu, L., Huang, R., & Li, X. (2020). Hydro-mechanical Analysis of Rainfall-Induced Landslides. Springer Singapore. doi:10.1007/978-981-15-0761-8.
[35] SNI 8460. (2017). Geotechnical design requirements. Badan Standardisasi Nasional, Jakarta, Indonesia. (In Indonesian).
[36] Pagano, L., Fontanella, E., Sica, S., & Desideri, A. (2010). Pore water pressure measurements in the interpretation of the hydraulic behaviour of two earth dams. Soils and Foundations, 50(2), 295–307. doi:10.3208/sandf.50.295.
[37] Pradiptia, A., Agung, P. A. M., Pramusandi, S., Hasan, M. F. R., Suripto, Zainorabidin, A. Bin, & Ahmad, M. A. (2023). In-Situ Stabilization Analyses of Peaty Clay Soil Layers using Solid Waste from of Biomass Power Plant. International Journal of Design & Nature and Ecodynamics, 18(6), 1299–1313. doi:10.18280/ijdne.180603.
[38] Lovisa, J., Read, W., & Sivakugan, N. (2010). Consolidation Behavior of Soils Subjected to Asymmetric Initial Excess Pore Pressure Distributions. International Journal of Geomechanics, 10(5), 181–189. doi:10.1061/(asce)gm.1943-5622.0000061.
[39] Wang, L., & Chai, J. (2024). Time Series Prediction of Pore Water Pressure on Earth Dam Slopes Based on Recurrent Neural Network. Proceedings of the 2024 8th International Conference on Civil Architecture and Structural Engineering (ICCASE 2024), 675–686. doi:10.2991/978-94-6463-449-5_66.
[40] Parthasarathy, C. R., Sitharam, T. G., & Kolathayar, S. (2019). Geotechnical considerations for the concept of coastal reservoir at Mangaluru to impound the flood waters of Netravati River. Marine Georesources & Geotechnology, 37(2), 236–244. doi:10.1080/1064119X.2018.1430194.
[41] Dubey, R. P., Ghosh, A., Mitra, T., Choudhuri, B., Ghosh, S. N., & Khatun, S. (2017). Stability Analysis of River Dyke in Estuarine Environment. Indian Geotechnical Journal, 47(3), 349–363. doi:10.1007/s40098-017-0221-2.
[42] Rezaei, M., Ajalloeian, R., & Ghafoori, M. (2012). Geotechnical Properties of Problematic Soils Emphasis on Collapsible Cases. International Journal of Geosciences, 3(1), 105–110. doi:10.4236/ijg.2012.31012.
[43] Chien-Yuan, C., Tien-Chien, C., Fan-Chieh, Y., & Sheng-Chi, L. (2005). Analysis of time-varying rainfall infiltration induced landslide. Environmental Geology, 48(4–5), 466–479. doi:10.1007/s00254-005-1289-z.
[44] Ng, C. W. W., & Pang, Y. W. (2000). Influence of Stress State on Soil-Water Characteristics and Slope Stability. Journal of Geotechnical and Geoenvironmental Engineering, 126(2), 157–166. doi:10.1061/(asce)1090-0241(2000)126:2(157).
[45] Wu, L. Z., Zhu, S. R., & Peng, J. (2020). Application of the Chebyshev spectral method to the simulation of groundwater flow and rainfall-induced landslides. Applied Mathematical Modelling, 80, 408–425. doi:10.1016/j.apm.2019.11.043.
[46] Lei, H., Feng, S., & Jiang, Y. (2018). Geotechnical characteristics and consolidation properties of Tianjin marine clay. Geomechanics and Engineering, 16(2), 125–140. doi:10.12989/gae.2018.16.2.125.
[47] Baligh, M. M., & Levadoux, J. N. (1980). Pore pressure dissipation after cone penetration. Sea Grant College Program Massachusetts Institute of Technology, Cambridge, Massachusetts, United States.
[48] Martinez, A., & Stutz, H. H. (2024). Evolution of excess pore water pressure in undrained clay-structure interface shear tests. E3S Web of Conferences, 544, 1025. doi:10.1051/e3sconf/202454401025.
[49] Song, C., Bekele, B., & Silvey, A. (2019). Pore Pressure Responses of Overconsolidated Soils in a Partially Drained Piezocone Penetration Test. Journal of Engineering Mechanics, 145(4), 4019017. doi:10.1061/(asce)em.1943-7889.0001594.
[50] Fredlund, D. G., Rahardjo, H., Rahardjo, H., & Fredlund, M. D. (2012). Unsaturated Soil Mechanics in Engineering Practice. Wiley, Hoboken, United states.
[51] Wang, J., Li, S., Li, L., Song, S., Lin, P., & Ba, X. (2019). Simulated of flow in a three-dimensional porous structure by using the IB-SEM system. Geomechanics and Engineering, 18(6), 651–659. doi:10.12989/gae.2019.18.6.651.
[52] Simonsen, T. R., & Sorensen, K. K. (2017, September). Field measurements of pore-water pressure changes in a stiff fissured very high plasticity Palaeogene clay during excavation and pile driving. Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, South Korea.
[53] Agung, P. A. M., Hasan, M. F. R., Baidhowy, M. S., Susilo, A., Suryo, E. A., Pramusandi, S., Adinegara, A. W., & Pradiptiya, A. (2025). Soil Shear Strength Analysis to Determine Landslide Potential Based on UU Triaxial Test. IOP Conference Series: Earth and Environmental Science, 1439(1), 12002. doi:10.1088/1755-1315/1439/1/012002.
[54] Agung, P. A. M., Ahmad, M. A., & Hasan, M. F. R. (2022). Probability Liquefaction on Silty Sand Layer on Central Jakarta. International Journal of Integrated Engineering, 14(9), 48–55. doi:10.30880/ijie.2022.14.09.007.
[55] Agung, P. A. M., & Ahmad, M. A. (2014). Potential Liquefaction Of Loose Sand Lenses: Case Study in Surabaya East Coastal Plain, Indonesia. International Journal of Integrated Engineering, 6(2), 1-10.
[56] Bian, X., Hu, J., Thompson, D., & Powrie, W. (2019). Pore pressure generation in a poro-elastic soil under moving train loads. Soil Dynamics and Earthquake Engineering, 125, 105711. doi:10.1016/j.soildyn.2019.105711.
[57] Mi, B., & Xiang, Y. (2020). Analysis of the limit support pressure of a shallow shield tunnel in sandy soil considering the influence of seepage. Symmetry, 12(6), 1023. doi:10.3390/SYM12061023.
[58] Tschuschke, W., Gogolik, S., Wrózynska, M., Kroll, M., & Stefanek, P. (2020). The application of the seismic cone penetration test (SCPTU) in tailingswater conditions monitoring. Water (Switzerland), 12(3), 737. doi:10.3390/w12030737.
[59] Yang, R., Xiao, P., & Qi, S. (2019). Analysis of Slope Stability in Unsaturated Expansive Soil: A Case Study. Frontiers in Earth Science, 7, 292. doi:10.3389/feart.2019.00292.
[60] Li, K. S., & Lo, S.-C. R. (2020). Probabilistic Methods in Geotechnical Engineering. CRC Press, London, United Kingdom. doi:10.1201/9781003077749.
[61] Singh, A., Singh, D., & Chakraborty, M. (2022). Effect of various initial excess pore water pressure distributions on 1-D consolidation of clays. International Journal of Geotechnical Engineering, 16(1), 123–132. doi:10.1080/19386362.2021.1956183.
[62] Zhai, Q., Rahardjo, H., & Satyanaga, A. (2019). Estimation of air permeability function from soil-water characteristic curve. Canadian Geotechnical Journal, 56(4), 505–513. doi:10.1139/cgj-2017-0579.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.