Experimental Study on Strength and Performance of Foamed Concrete with Glass Powder and Zeolite

Mahmoud Al-Khazaleh, P. Krishna Kumar, Deya Qtiashat, Ali Alqatawna

Abstract


Cement manufacturing accounts for approximately 7% of anthropogenic CO₂ emissions. To mitigate environmental impact and achieve “net zero” by 2050, developing cementitious materials that minimize cement consumption is crucial. This research aims to reduce cement usage in Foamed Concrete (FC). The study investigates the mechanical, durability, and thermal properties of FC using two distinct Supplementary Cementitious Admixtures (SCA): Glass Powder (GP) and natural zeolite. Cement was replaced with SCA at varying percentages (0%, 5%, 10%, 15%, 20%, and 25% by weight) in FC. The FC density was adjusted by incorporating foam at 15% and 30% of the total volume of concrete. The study evaluated the flowability of each mix in its fresh state. The mechanical properties were assessed by measuring compressive strength and ultrasonic pulse velocity. The performance of FC was further analyzed in terms of thermal conductivity, sorptivity, and water absorption. The test results revealed that FC with GP combinations exhibited high flowability and an improved strength-to-density ratio. Additionally, water absorption, sorptivity, and thermal conductivity were significantly reduced compared to conventional FC. An extensive cost-benefit analysis highlighted the feasibility of utilizing common waste materials to produce high-grade FC and assessed the impacts of cementitious admixtures as viable alternatives to cement.

 

Doi: 10.28991/CEJ-2024-010-12-06

Full Text: PDF


Keywords


Foamed Concrete; Glass Powder; Natural Zeolite; Sorptivity; Plastic Density; Thermal Conductivity.

References


Costa, F. N., & Ribeiro, D. V. (2020). Reduction in CO2 emissions during production of cement, with partial replacement of traditional raw materials by civil construction waste (CCW). Journal of Cleaner Production, 276, 123302. doi:10.1016/j.jclepro.2020.123302.

Jones, M. R., & McCarthy, A. (2005). Utilising unprocessed low-lime coal fly ash in foamed concrete. Fuel, 84(11), 1398–1409. doi:10.1016/j.fuel.2004.09.030.

Chica, L., & Alzate, A. (2019). Cellular concrete review: New trends for application in construction. Construction and Building Materials, 200, 637–647. doi:10.1016/j.conbuildmat.2018.12.136.

Chica, L., Mera, C., Sepúlveda-Cano, L. M., & Alzate, A. (2022). Porosity estimation and pore structure characterization of foamed cement paste using non-specialized image digital processing. Materials and Structures/Materiaux et Constructions, 55(7). doi:10.1617/s11527-022-02031-6.

Jones, M. R., & McCarthy, A. (2006). Heat of hydration in foamed concrete: Effect of mix constituents and plastic density. Cement and Concrete Research, 36(6), 1032–1041. doi:10.1016/j.cemconres.2006.01.011.

Nambiar, E. K. K., & Ramamurthy, K. (2007). Sorption characteristics of foam concrete. In Cement and Concrete Research (Vol. 37, Issue 9, pp. 1341–1347). doi:10.1016/j.cemconres.2007.05.010.

Nambiar, E. K. K., & Ramamurthy, K. (2006). Influence of filler type on the properties of foam concrete. In Cement and Concrete Composites (Vol. 28, Issue 5, pp. 475–480). doi:10.1016/j.cemconcomp.2005.12.001.

Wei, S., Yunsheng, Z., & Jones, M. R. (2014). Using the ultrasonic wave transmission method to study the setting behavior of foamed concrete. Construction and Building Materials, 51, 62–74. doi:10.1016/j.conbuildmat.2013.10.066.

Tarasov, A. S., Kearsley, E. P., Kolomatskiy, A. S., & Mostert, H. F. (2010). Heat evolution due to cement hydration in foamed concrete. Magazine of Concrete Research, 62(12), 895–906. doi:10.1680/macr.2010.62.12.895.

Kunhanandan Nambiar, E. K., & Ramamurthy, K. (2008). Fresh state characteristics of foam concrete. Journal of materials in civil engineering, 20(2), 111-117.. doi:10.1061/(asce)0899-1561(2008)20:2(111).

Chindaprasirt, P., & Rattanasak, U. (2011). Shrinkage behavior of structural foam lightweight concrete containing glycol compounds and fly ash. Materials and Design, 32(2), 723–727. doi:10.1016/j.matdes.2010.07.036.

Ramamurthy, K., & Narayanan, N. (2000). Influence of composition and curing on drying shrinkage of aerated concrete. Materials and Structures/Materiaux et Constructions, 33(4), 243–250. doi:10.1007/bf02479334.

Cho, S., Kruger, J., van Rooyen, A., Zeranka, S., & van Zijl, G. (2020). Rheology of 3D Printable Lightweight Foam Concrete Incorporating Nano-Silica. Rheology and Processing of Construction Materials. RheoCon SCC 2019 2019, RILEM Bookseries, 23, Springer, Cham, Switzerland. doi:10.1007/978-3-030-22566-7_43.

Krämer, C., Schauerte, M., Kowald, T. L., & Trettin, R. H. F. (2015). Three-phase-foams for foam concrete application. Materials Characterization, 102, 173–179. doi:10.1016/j.matchar.2015.03.004.

Sarı, A., Nas, M., Yeşilata, B., Ustaoğlu, A., Erdoğmuş, E., Torlaklı, H., Hekimoğlu, G., & Gencel, O. (2024). A novel cement mortar comprising natural zeolite/dodecyl alcohol shape stable composite phase change material for energy effective buildings. Journal of Energy Storage, 87, 111266. doi:10.1016/j.est.2024.111266.

Gökçe, H. S., Hatungimana, D., & Ramyar, K. (2019). Effect of fly ash and silica fume on hardened properties of foam concrete. Construction and Building Materials, 194, 1–11. doi:10.1016/j.conbuildmat.2018.11.036.

Lim, S. K., Tan, C. S., Li, B., Ling, T. C., Hossain, M. U., & Poon, C. S. (2017). Utilizing high volumes quarry wastes in the production of lightweight foamed concrete. Construction and Building Materials, 151, 441–448. doi:10.1016/j.conbuildmat.2017.06.091.

Falliano, D., Restuccia, L., Ferro, G. A., & Gugliandolo, E. (2020). Strategies to increase the compressive strength of ultra-lightweight foamed concrete. Procedia Structural Integrity, 28, 1673–1678. doi:10.1016/j.prostr.2020.10.141.

Feng, S., Gao, Y., Xiao, H., & Xue, C. (2024). Influence of fibers and bubble structure on thermal conductivity and mechanical performances of foam concrete. Construction and Building Materials, 445, 137956. doi:10.1016/j.conbuildmat.2024.137956.

Feng, N. Q., & Peng, G. F. (2005). Applications of natural zeolite to construction and building materials in China. In Construction and Building Materials (Vol. 19, Issue 8, pp. 579–584). doi:10.1016/j.conbuildmat.2005.01.013.

Chandni, T. J., & Anand, K. B. (2018). Utilization of recycled waste as filler in foam concrete. Journal of Building Engineering, 19, 154–160. doi:10.1016/j.jobe.2018.04.032.

Song, Q., Zou, Y., Zhang, P., Xu, S., Yang, Y., Bao, J., Xue, S., Liu, J., Gao, S., & Lin, L. (2025). Novel high-efficiency solid particle foam stabilizer: Effects of modified fly ash on foam properties and foam concrete. Cement and Concrete Composites, 155, 105818. doi:10.1016/j.cemconcomp.2024.105818.

Seraj, S., Ferron, R. D., & Juenger, M. C. G. (2016). Calcining natural zeolites to improve their effect on cementitious mixture workability. Cement and Concrete Research, 85, 102–110. doi:10.1016/j.cemconres.2016.04.002.

Nambiar, E. K. K., & Ramamurthy, K. (2007). Air-void characterisation of foam concrete. In Cement and Concrete Research (Vol. 37, Issue 2, pp. 221–230). doi:10.1016/j.cemconres.2006.10.009.

She, W., Du, Y., Miao, C., Liu, J., Zhao, G., Jiang, J., & Zhang, Y. (2018). Application of organic- and nanoparticle-modified foams in foamed concrete: Reinforcement and stabilization mechanisms. Cement and Concrete Research, 106, 12–22. doi:10.1016/j.cemconres.2018.01.020.

Du, H., & Tan, K. H. (2017). Properties of high volume glass powder concrete. Cement and Concrete Composites, 75, 22–29. doi:10.1016/j.cemconcomp.2016.10.010.

Elaqra, H. A., Al-Afghany, M. J., Abo-Hasseira, A. B., Elmasry, I. H., Tabasi, A. M., & Alwan, M. D. (2019). Effect of immersion time of glass powder on mechanical properties of concrete contained glass powder as cement replacement. Construction and Building Materials, 206, 674–682. doi:10.1016/j.conbuildmat.2019.02.110.

Karakurt, C., Kurama, H., & Topçu, I. B. (2010). Utilization of natural zeolite in aerated concrete production. Cement and Concrete Composites, 32(1), 1–8. doi:10.1016/j.cemconcomp.2009.10.002.

Mahmoud Hama, S. (2021). Evalutions of strengths, impact and energy capacity of two-way concrete slabs incorprating waste plastic. Journal of King Saud University - Engineering Sciences, 33(5), 337–345. doi:10.1016/j.jksues.2020.09.007.

Valipour, M., Pargar, F., Shekarchi, M., & Khani, S. (2013). Comparing a natural pozzolan, zeolite, to metakaolin and silica fume in terms of their effect on the durability characteristics of concrete: A laboratory study. Construction and Building Materials, 41, 879–888. doi:10.1016/j.conbuildmat.2012.11.054.

Xu, Y., Yao, L., & Yu, X. (2024). Effect of polypropylene fibers on mechanical and wetting properties of overall superhydrophobic foamed concrete. Construction and Building Materials, 448, 138207. doi:10.1016/j.conbuildmat.2024.138207.

Dora, S., Kuznik, F., & Mini, K. M. (2025). A novel PCM-based foam concrete for heat transfer in buildings -Experimental developments and simulation modelling. Journal of Energy Storage, 105, 114625. doi:10.1016/j.est.2024.114625.

Cao, W., Lv, X., Li, J., Lu, J. X., Moon, J., & Poon, C. S. (2024). Enhancing the mechanical and thermal properties of foam concrete by incorporating glass lightweight microspheres. Construction and Building Materials, 447, 138103. doi:10.1016/j.conbuildmat.2024.138103.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-12-06

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Krishna Kumar P

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message