Comparison of Multi-Objective Metaheuristics for Discrete Optimization of Steel Trusses Using Direct Analysis

Trung-Hieu Tran, Quoc-Anh Vu, Viet-Hung Truong, Ngoc-Thang Nguyen

Abstract


This study enriches structural optimization research using direct analysis for steel truss structures, which is often hampered by high computational demands. The main objective of this work is to evaluate multi-objective optimization algorithms in truss sizing optimization with discrete variables, focusing on minimizing total mass and controlling inter-story drift under multiple load combinations. Five leading multi-objective metaheuristic algorithms were assessed: SPEA2, GDE3, NSGA2, MOEA/D, and the novel MOEA/D-EpDE, which uniquely combines MOEA/D with Dynamical Resource Allocation and pbest Differential Evolution. Four performance indicators, such as Generational Distance (GD), GD Plus (GD+), Inverted GD+ (IGD+), and Hypervolume (HV), were utilized. Findings from four truss optimization problems revealed that all considered algorithms located feasible optimal solutions, but MOEA/D-EpDE excelled, consistently securing the lowest GD, GD+, IGD+, and anchor point values, along with the highest HV values in most scenarios. This indicates its superior capability in addressing the problem efficiently. NSGA2 and MOEA/D also performed well, outperforming GDE3 and SPEA2. This study is pioneering in its application of these algorithms to steel truss optimization via direct analysis, highlighting the potential for advanced computational techniques in structural engineering.

 

Doi: 10.28991/CEJ-2024-010-12-07

Full Text: PDF


Keywords


Optimization; Direct Analysis; Truss; Multi-Objective; Metaheuristic; Discrete.

References


Habibi, A. R., & Bidmeshki, S. (2018). A dual approach to perform geometrically nonlinear analysis of plane truss structures. Steel and Composite Structures, 27(1), 13–25. doi:10.12989/scs.2018.27.1.013.

Thai, H. T., & Kim, S. E. (2009). Practical advanced analysis software for nonlinear inelastic analysis of space steel structures. Advances in Engineering Software, 40(9), 786–797. doi:10.1016/j.advengsoft.2009.02.001.

Sheng-Xue, H. (2023). Truss optimization with frequency constraints using the medalist learning algorithm. Structures, 55, 1–15. doi:10.1016/j.istruc.2023.06.014.

Ouardani, A. El, & Tbatou, T. (2024). Seismic Isolators Layout Optimization Using Genetic Algorithm Within the Pymoo Framework. Civil Engineering Journal (Iran), 10(8), 2517–2535. doi:10.28991/CEJ-2024-010-08-07.

Altay, O., Cetindemir, O., & Aydogdu, I. (2024). Size optimization of planar truss systems using the modified salp swarm algorithm. Engineering Optimization, 56(4), 469–485. doi:10.1080/0305215X.2022.2160449.

Kaveh, A., & Hosseini, S. M. (2022). Improved Bat Algorithm Based on Doppler Effect for Optimal Design of Special Truss Structures. Journal of Computing in Civil Engineering, 36(6), 4022028. doi:10.1061/(asce)cp.1943-5487.0001042.

Nguyen, M. N., Hoang, V. N., & Lee, D. (2023). Multiscale topology optimization with stress, buckling and dynamic constraints using adaptive geometric components. Thin-Walled Structures, 183, 110405. doi:10.1016/j.tws.2022.110405.

Yasin, A. A., Awwad, M. T., Malkawi, A. B., Maraqa, F. R., & Alomari, J. A. (2023). Optimization of Tuff Stones Content in Lightweight Concrete Using Artificial Neural Networks. Civil Engineering Journal (Iran), 9(11), 2823–2833. doi:10.28991/CEJ-2023-09-11-013.

Contreras-Bejarano, O., & Villalba-Morales, J. D. (2024). On the use of the differential evolution algorithm for truss-type structures optimization. Applied Soft Computing, 161, 111372. doi:10.1016/j.asoc.2024.111372.

Hajela, P., & Lee, E. (1995). Genetic algorithms in truss topological optimization. International Journal of Solids and Structures, 32(22), 3341–3357. doi:10.1016/0020-7683(94)00306-H.

Bennage, W. A., & Dhingra, A. K. (1995). Optimization of truss topology using tabu search. International Journal for Numerical Methods in Engineering, 38(23), 4035–4052. doi:10.1002/nme.1620382308.

Lamberti, L. (2008). An efficient simulated annealing algorithm for design optimization of truss structures. Computers & Structures, 86(19–20), 1936–1953. doi:10.1016/j.compstruc.2008.02.004.

Serra, M., & Venini, P. (2006). On some applications of ant colony optimization metaheuristic to plane truss optimization. Structural and Multidisciplinary Optimization, 32(6), 499–506. doi:10.1007/s00158-006-0042-x.

Schutte, J. F., & Groenwold, A. A. (2003). Sizing design of truss structures using particle swarms. Structural and Multidisciplinary Optimization, 25(4), 261–269. doi:10.1007/s00158-003-0316-5.

Landa Becerra, R., & Coello, C. A. C. (2006). Cultured differential evolution for constrained optimization. Computer Methods in Applied Mechanics and Engineering, 195(33–36), 4303–4322. doi:10.1016/j.cma.2005.09.006.

Degertekin, S. O., Lamberti, L., & Ugur, I. B. (2018). Sizing, layout and topology design optimization of truss structures using the Jaya algorithm. Applied Soft Computing Journal, 70, 903–928. doi:10.1016/j.asoc.2017.10.001.

Pierezan, J., dos Santos Coelho, L., Cocco Mariani, V., Hochsteiner de Vasconcelos Segundo, E., & Prayogo, D. (2021). Chaotic coyote algorithm applied to truss optimization problems. Computers & Structures, 242, 106353. doi:10.1016/j.compstruc.2020.106353.

Kaveh, A., & Mahdavi, V. R. (2015). Colliding bodies optimization for size and topology optimization of truss structures. Structural Engineering and Mechanics, 53(5), 847–865. doi:10.12989/sem.2015.53.5.847.

Madah, H., & Amir, O. (2017). Truss optimization with buckling considerations using geometrically nonlinear beam modeling. Computers & Structures, 192, 233–247. doi:10.1016/j.compstruc.2017.07.023.

Missoum, S., Gürdal, Z., & Gu, W. (2002). Optimization of nonlinear trusses using a displacement-based approach. Structural and Multidisciplinary Optimization, 23(3), 214–221. doi:10.1007/s00158-002-0179-1.

Hrinda, G. A., & Nguyen, D. T. (2008). Optimization of stability-constrained geometrically nonlinear shallow trusses using an arc length sparse method with a strain energy density approach. Finite Elements in Analysis and Design, 44(15), 933–950. doi:10.1016/j.finel.2008.07.004.

Kameshki, E. S., & Saka, M. P. (2007). Optimum geometry design of nonlinear braced domes using genetic algorithm. Computers and Structures, 85(1–2), 71–79. doi:10.1016/j.compstruc.2006.09.002.

Martinez, S. Z., & Coello, C. A. C. (2014). A multi-objective evolutionary algorithm based on decomposition for constrained multi-objective optimization. IEEE Congress on Evolutionary Computation (CEC), 429–436. doi:10.1109/cec.2014.6900645.

Deb, K., Agrawal, S., Pratap, A., Meyarivan, T. (2000). A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. Parallel Problem Solving from Nature PPSN VI, PPSN 2000. Lecture Notes in Computer Science, 1917. Springer, Berlin, Germany. doi:10.1007/3-540-45356-3_83.

Sarker, R., Liang, K. H., & Newton, C. (2002). A new multiobjective evolutionary algorithm. European Journal of Operational Research, 140(1), 12–23. doi:10.1016/S0377-2217(01)00190-4.

Kukkonen, S., & Lampinen, J. (2005). GDE3: The third Evolution Step of Generalized Differential Evolution. 2005 IEEE Congress on Evolutionary Computation, 1, 443–450. doi:10.1109/cec.2005.1554717.

Gholizadeh, S., & Fattahi, F. (2021). Multi-objective design optimization of steel moment frames considering seismic collapse safety. Engineering with Computers, 37(2), 1315–1328. doi:10.1007/s00366-019-00886-y.

Eid, H. F., Garcia-Hernandez, L., & Abraham, A. (2022). Spiral water cycle algorithm for solving multi-objective optimization and truss optimization problems. Engineering with Computers, 38, 963–973. doi:10.1007/s00366-020-01237-y.

Kaveh, A., & Ilchi Ghazaan, M. (2020). A new VPS-based algorithm for multi-objective optimization problems. Engineering with Computers, 36(3), 1029–1040. doi:10.1007/s00366-019-00747-8.

Lemonge, A. C. C., Carvalho, J. P. G., Hallak, P. H., & Vargas, D. E. C. (2021). Multi-objective truss structural optimization considering natural frequencies of vibration and global stability. Expert Systems with Applications, 165, 113777. doi:10.1016/j.eswa.2020.113777.

Ho-Huu, V., Duong-Gia, D., Vo-Duy, T., Le-Duc, T., & Nguyen-Thoi, T. (2018). An efficient combination of multi-objective evolutionary optimization and reliability analysis for reliability-based design optimization of truss structures. Expert Systems with Applications, 102, 262–272. doi:10.1016/j.eswa.2018.02.040.

Cao, T. S., Pham, H. A., & Truong, V. H. (2024). An efficient algorithm for multi-objective structural optimization problems using an improved pbest-based differential evolution algorithm. Advances in Engineering Software, 197, 103752. doi:10.1016/j.advengsoft.2024.103752.

Cao, T. S., Nguyen, T. T. T., Nguyen, V. S., Truong, V. H., & Nguyen, H. H. (2023). Performance of Six Metaheuristic Algorithms for Multi-Objective Optimization of Nonlinear Inelastic Steel Trusses. Buildings, 13(4), 868. doi:10.3390/buildings13040868.

Panagant, N., Pholdee, N., Bureerat, S., Yildiz, A. R., & Mirjalili, S. (2021). A Comparative Study of Recent Multi-objective Metaheuristics for Solving Constrained Truss Optimisation Problems. Archives of Computational Methods in Engineering, 28(5), 4031–4047. doi:10.1007/s11831-021-09531-8.

Panagant, N., Kumar, S., Tejani, G. G., Pholdee, N., & Bureerat, S. (2023). Many‑objective meta-heuristic methods for solving constrained truss optimisation problems: A comparative analysis. MethodsX, 10, 102181. doi:10.1016/j.mex.2023.102181.

Nguyen, H. H., & Truong, V. H. (2024). Machine Learning-based prediction of seismic lateral deflection of steel trusses using nonlinear time-history analysis. Structures, 69, 107369. doi:10.1016/j.istruc.2024.107369.

Truong, V. H., Tangaramvong, S., & Papazafeiropoulos, G. (2024). An efficient LightGBM-based differential evolution method for nonlinear inelastic truss optimization. Expert Systems with Applications, 237, 121530. doi:10.1016/j.eswa.2023.121530.

Nguyen, Q.-B. (2024). An Efficient Framework for Optimization of Nonlinear Steel Trusses with Continuous Variables Using Lightgbm. International Journal of Geomate, 26(116). doi:10.21660/2024.116.4398.

Blandford, G. E. (1996). Progressive failure analysis of inelastic space truss structures. Computers and Structures, 58(5), 981–990. doi:10.1016/0045-7949(95)00217-5.

Yang, Y.-B., & Kuo, S.-R. (1994). Theory & Analysis of Nonlinear Framed Structures. Prentice Hall. Hoboken, United States.

Yang, Y. Bin, & Shieh, M. S. (1990). Solution method for nonlinear problems with multiple critical points. AIAA Journal, 28(12), 2110–2116. doi:10.2514/3.10529.

Srinivas, N., & Deb, K. (1994). Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 2(3), 221–248. doi:10.1162/evco.1994.2.3.221.

Deb, K., & Agrawal, R. B. (1995). Simulated binary crossover for continuous search space. Complex systems, 9(2), 115-148.

Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257–271. doi:10.1109/4235.797969.

Zitzler, E., Laumanns, M., Thiele, L., et al. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. TIK Report, Computer Engineering and Networks Laboratory, ETH Zurich, Zürich, Switzerland. doi:10.3929/ethz-a-004284029.

Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712–731. doi:10.1109/TEVC.2007.892759.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-12-07

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Ngoc Thang Nguyen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message