Assessment of Mechanical Properties of Corroded Reinforcement in Chloride Environment Based on Corrosion Rate Monitoring
Downloads
Doi: 10.28991/CEJ-2024-010-11-02
Full Text: PDF
Downloads
[2] Kim, S., Jeong, Y., Kwon, M., & Kim, J. (2024). Combined deterioration effects of freeze–thaw and corrosion on the cyclic flexural behavior of RC beams. Journal of Building Engineering, 84, 108564. doi:10.1016/j.jobe.2024.108564.
[3] Shevtsov, D., Cao, N. L., Nguyen, V. C., Nong, Q. Q., Le, H. Q., Nguyen, D. A., Zartsyn, I., & Kozaderov, O. (2022). Progress in Sensors for Monitoring Reinforcement Corrosion in Reinforced Concrete Structures”A Review. Sensors, 22(9), 3421. doi:10.3390/s22093421.
[4] Ebell, G., Mayer, T. F., Harnisch, J., & Dauberschmidt, C. (2024). Corrosion monitoring of reinforced concrete structures: The DGZfP specification B12 Collaboration. Materials and Corrosion, 75(2), 188–196. doi:10.1002/maco.202313934.
[5] Bras, A., van der Bergh, J. M., Mohammed, H., & Nakouti, I. (2021). Design service life of RC structures with self-healing behaviour to increase infrastructure carbon savings. Materials, 14(12), 3154. doi:10.3390/ma14123154.
[6] Verma, S. K., Bhadauria, S. S., & Akhtar, S. (2016). In-situ condition monitoring of reinforced concrete structures. Frontiers of Structural and Civil Engineering, 10(4), 420–437. doi:10.1007/s11709-016-0336-z.
[7] Yu, L., François, R., Dang, V. H., L'Hostis, V., & Gagné, R. (2015). Distribution of corrosion and pitting factor of steel in corroded RC beams. Construction and Building Materials, 95, 384–392. doi:10.1016/j.conbuildmat.2015.07.119.
[8] Trejo, D., Halmen, C., & Reinschmidt, K. (2009). Corrosion performance tests for reinforcing steel in concrete: technical report. No. FHWA/TX-09/0-4825-1, Texas Transportation Institute, Bryan, United States.
[9] Bahleda, F., Prokop, J., KoteС, P., & Wdowiak-Postulak, A. (2023). Mechanical Properties of Corroded Reinforcement. Buildings, 13(4), 855. doi:10.3390/buildings13040855.
[10] Li, C. Q., Zheng, J. J., & Shao, L. (2003). New Solution for Prediction of Chloride Ingress in Reinforced Concrete Flexural Members. ACI Materials Journal, 100(4), 319–325. doi:10.14359/12670.
[11] Broomfield, J.P. (2007). Corrosion of Steel in Concrete: Understanding, Investigation and Repair (2nd Ed.). CRC Press, Boca Raton, United States.
[12] Imperatore, S. (2022). Mechanical Properties Decay of Corroded Reinforcement in Concrete”An Overview. Corrosion and Materials Degradation, 3(2), 210–220. doi:10.3390/cmd3020012.
[13] Cairns, J., Plizzari, G. A., Du, Y., Law, D. W., & Franzoni, C. (2005). Mechanical properties of corrosion-damaged reinforcement. ACI Materials Journal, 102(4), 256–264. doi:10.14359/14619.
[14] Imperatore, S., & Rinaldi, Z. (2008). Mechanical behaviour of corroded rebars and influence on the structural response of R/C elements. Concrete Repair, Rehabilitation and Retrofitting II (ICCRRR-2), 24–26 November 2008, Cape Town, South Africa.
[15] Rinaldi, Z., Imperatore, S., & Valente, C. (2010). Experimental evaluation of the flexural behavior of corroded P/C beams. Construction and Building Materials, 24(11), 2267–2278. doi:10.1016/j.conbuildmat.2010.04.029.
[16] Apostolopoulos, A., & Matikas, T. E. (2016). Corrosion of bare and embedded in concrete steel bar-impact on mechanical behavior. International Journal of Structural Integrity, 7(2), 240–259. doi:10.1108/IJSI-09-2014-0047.
[17] Imperatore, S., Rinaldi, Z., & Drago, C. (2017). Degradation relationships for the mechanical properties of corroded steel rebars. Construction and Building Materials, 148, 219–230. doi:10.1016/j.conbuildmat.2017.04.209.
[18] Zhu, W. (2014). Effect of corrosion on the mechanical properties of the corroded reinforcement and the residual structural performance of the corroded beams. Ph.D. Thesis, Université de Toulouse, Toulouse, France.
[19] Yuan, Y., Ji, Y., & Shah, S. P. (2007). Comparison of two accelerated corrosion techniques for concrete structures. ACI Structural Journal, 104(3), 344–347. doi:10.14359/18624.
[20] Grandić, D., & Bjegović, D. (2011). Reinforcement Corrosion Rate in Cracked Areas of RC-Members Subjected to Sustained Load. Modelling of Corroding Concrete Structures: Proceedings of the Joint fib-RILEM Workshop held in Madrid, Spain, 22–23 November 2010, 65–83. doi:10.1007/978-94-007-0677-4_4.
[21] Grandić, D., Bjegović, D., & Serdar, M. (2009). Chloride threshold for different levels of reinforcement corrosion propagation. In 2nd International RILEM Workshop. Haifa, Israel, 7-9 September 2009, 416-422.
[22] Рćulac, P., Davor, G., & Рtimac Grandić, I. (2020). Degradation of tension stiffening due to corrosion-an experimental study on cracked specimens. In 2nd International Conference on Construction Materials for a Sustainable Future COMS_2020/21, 287-294.
[23] Caprili, S., & Salvatore, W. (2018). Mechanical performance of steel reinforcing bars in uncorroded and corroded conditions. Data in Brief, 18, 1677–1695. doi:10.1016/j.dib.2018.04.072.
[24] Hong, S., Zheng, F., Shi, G., Li, J., Luo, X., Xing, F., Tang, L., & Dong, B. (2020). Determination of impressed current efficiency during accelerated corrosion of reinforcement. Cement and Concrete Composites, 108, 103536. doi:10.1016/j.cemconcomp.2020.103536.
[25] El Maaddawy, T., Soudki, K., & Topper, T. (2005). Long-term performance of corrosion-damaged reinforced concrete beams. ACI Structural Journal, 102(5), 649–656. doi:10.14359/14660.
[26] Poupard, O., L'Hostis, V., Bouteiller, V., Capra, B., Catinaud, S., Francois, D., Garciaz, J.-L., Laurens, S., Luping, T., Olivier, G., & Tache, G. (2007). Corrosion diagnosis of reinforced concrete beams after 40 years exposure in marine environment by non-destructive tools. Revue Européenne de Génie Civil, 11(1–2), 35–54. doi:10.1080/17747120.2007.9692921.
[27] Zhu, W., François, R., Poon, C. S., & Dai, J. G. (2017). Influences of corrosion degree and corrosion morphology on the ductility of steel reinforcement. Construction and Building Materials, 148, 297–306. doi:10.1016/j.conbuildmat.2017.05.079.
[28] Zhu, W., & Francois, R. (2013). Effect of corrosion pattern on the ductility of tensile reinforcement extracted from a 26-year-old corroded beam. Advances in Concrete Construction, 1(2), 121–136. doi:10.12989/acc2013.01.2.121.
[29] Zhu, W., & François, R. (2014). Experimental investigation of the relationships between residual cross-section shapes and the ductility of corroded bars. Construction and Building Materials, 69, 335–345. doi:10.1016/j.conbuildmat.2014.07.059.
[30] François, R., Khan, I., & Dang, V. H. (2012). Impact of corrosion on mechanical properties of steel embedded in 27-year-old corroded reinforced concrete beams. Materials and Structures, 46(6), 899–910. doi:10.1617/s11527-012-9941-z.
[31] Fernandez, I., & Berrocal, C. G. (2019). Mechanical Properties of 30 Year-Old Naturally Corroded Steel Reinforcing Bars. International Journal of Concrete Structures and Materials, 13(1), 9. doi:10.1186/s40069-018-0308-x.
[32] Apostolopoulos, C. A., Demis, S., & Papadakis, V. G. (2013). Chloride-induced corrosion of steel reinforcement - Mechanical performance and pit depth analysis. Construction and Building Materials, 38, 139–146. doi:10.1016/j.conbuildmat.2012.07.087.
[33] Alzabeebee, S., Al"‘Hamd, R. K. S., Nassr, A., Kareem, M., & Keawsawasvong, S. (2023). Multiscale soft computing-based model of shear strength of steel fibre-reinforced concrete beams. Innovative Infrastructure Solutions, 8(1), 63. doi:10.1007/s41062-022-01028-y.
[34] Morinaga, S. (1988). Prediction of service lives of reinforced concrete buildings based on the rate of corrosion. Shimizu Institute of Technology, Tokyo, Japan.
[35] Poursaee, A., & Hansson, C. M. (2009). Potential pitfalls in assessing chloride-induced corrosion of steel in concrete. Cement and Concrete Research, 39(5), 391–400. doi:10.1016/j.cemconres.2009.01.015.
[36] Robuschi, S., Ivanov, O. L., Geiker, M., Fernandez, I., & Lundgren, K. (2022). Impact of cracks on distribution of chloride-induced reinforcement corrosion. Materials and Structures, 56(1). doi:10.1617/s11527-022-02085-6.
[37] Rodríguez, J., Ortega, L. M., Aragoncillo, J., Izquieredo, D., & Andrade, C. (2000). Structural assessment methodology for residual life calculation of concrete structures affected by reinforcement corrosion. International RILEM Workshop on Life Prediction and Aging Management of Concrete Structures, RILEM Publications SARL, 16-17 October, 2000, Cannes, France.
[38] Rodríguez, J., Aragoncillo, J., Andrade, C., & Izquierdo, D. (2002). Contecvet. A validated User's Manual for assessing the residual service life of concrete structures. Manual for assessing corrosion-affected concrete structures. EC Innovation Programme IN30902I, GEOCISA, Madrid, Spain.
[39] Val, D. V., & Melchers, R. E. (1997). Reliability of Deteriorating RC Slab Bridges. Journal of Structural Engineering, 123(12), 1638–1644. doi:10.1061/(asce)0733-9445(1997)123:12(1638).
[40] Stewart, M. G., & Al-Harthy, A. (2008). Pitting corrosion and structural reliability of corroding RC structures: Experimental data and probabilistic analysis. Reliability Engineering & System Safety, 93(3), 373–382. doi:10.1016/j.ress.2006.12.013.
[41] Lay, S. & Schießl, P. (2003) Lifecon Deliverable D 3.2 - Service Life Models. Technische Universität München, München, Germany.
[42] González, J. A., Andrade, C., Alonso, C., & Feliu, S. (1995). Comparison of rates of general corrosion and maximum pitting penetration on concrete embedded steel reinforcement. Cement and Concrete Research, 25(2), 257–264. doi:10.1016/0008-8846(95)00006-2.
[43] Mangat, P. S., & Elgarf, M. S. (1999). Flexural strength of concrete beams with corroding reinforcement. ACI Structural Journal, 96(1), 149–158. doi:10.14359/606.
[44] Frí¸lund, T., Klinghoffer, O., & Poulsen, E. (2000). Rebar corrosion rate measurements for service life estimates. ACI Fall Convention, 17-18 October, Toronto, Canada.
[45] Grandić, D., & Рtimac Grandić, I. (2021). Pitting factor in use of galvanostatic pulse method for measuring the corrosion rate of reinforcement in concrete. Machines. Technologies. Materials. 15(7), 259-263.
[46] Palsson, R., & Mirza, M. S. (2002). Mechanical response of corroded steel reinforcement of abandoned concrete bridge. ACI Structural Journal, 99(2), 157–162. doi:10.14359/11538.
[47] Tang, F., Lin, Z., Chen, G., & Yi, W. (2014). Three-dimensional corrosion pit measurement and statistical mechanical degradation analysis of deformed steel bars subjected to accelerated corrosion. Construction and Building Materials, 70, 104–117. doi:10.1016/j.conbuildmat.2014.08.001.
[48] Fernandez, I., Lundgren, K., & Zandi, K. (2018). Evaluation of corrosion level of naturally corroded bars using different cleaning methods, computed tomography, and 3D optical scanning. Materials and Structures, 51(3), 1-13. doi:10.1617/s11527-018-1206-z.
[49] Chen, E., Berrocal, C. G., Fernandez, I., Löfgren, I., & Lundgren, K. (2020). Assessment of the mechanical behaviour of reinforcement bars with localised pitting corrosion by Digital Image Correlation. Engineering Structures, 219, 110936. doi:10.1016/j.engstruct.2020.110936.
[50] Wang, X. G., Zhang, W. P., Gu, X. L., & Dai, H. C. (2013). Determination of residual cross-sectional areas of corroded bars in reinforced concrete structures using easy-to-measure variables. Construction and Building Materials, 38, 846–853. doi:10.1016/j.conbuildmat.2012.09.060.
[51] Turnbull, A., Horner, D. A., & Connolly, B. J. (2009). Challenges in modelling the evolution of stress corrosion cracks from pits. Engineering Fracture Mechanics, 76(5), 633–640. doi:10.1016/j.engfracmech.2008.09.004.
[52] Du, Y. G., Clark, L. A., & Chan, A. H. C. (2005). Effect of corrosion on ductility of reinforcing bars. Magazine of Concrete Research, 57(7), 407–419. doi:10.1680/macr.2005.57.7.407.
[53] Ou, Y. C., Susanto, Y. T. T., & Roh, H. (2016). Tensile behavior of naturally and artificially corroded steel bars. Construction and Building Materials, 103, 93–104. doi:10.1016/j.conbuildmat.2015.10.075.
[54] Finozzi, I., Saetta, A., & Budelmann, H. (2018). Structural response of reinforcing bars affected by pitting corrosion: experimental evaluation. Construction and Building Materials, 192, 478–488. doi:10.1016/j.conbuildmat.2018.10.088.
[55] Hingorani, R., Pérez, F., Sánchez, J., Fullea, J., Andrade, C., & Tanner, P. (2013). Loss of ductility and strength of reinforcing steel due to pitting corrosion. Proceedings of the 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures, FraMCoS 2013, 2009–2018.
[56] Grandić, D. (2008). Calculation procedures for evaluating remaining load bearing capacity and serviceability of corroded reinforced concrete structures. Ph.D. thesis. Faculty of Civil Engineering, University of Zagreb. Croatia. (in Croatian).
[57] ASTM C1202-19. (2022). Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration. ASTM International, Pennsylvania, United States. doi:10.1520/C1202-19.
[58] Ukrainczyk, V., & Bjegović, D. (1995). Materials testing in the insurance system of durability of concrete structures. Civil engineering yearbook, 209-286. (in Croatian)
[59] Li, C. Q. (2003). Initiation of chloride-induced reinforcement corrosion in concrete structural members - Prediction. ACI Structural Journal, 100(1), 126–127. doi:10.14359/10293.
[60] Li, C. Q. (2002). Initiation of chloride-induced reinforcement corrosion in concrete structural members - Prediction. ACI Structural Journal, 99(2), 133–141. doi:10.14359/11535.
[61] Nygaard, P. V., Geiker, M. R., & Elsener, B. (2009). Corrosion rate of steel in concrete: Evaluation of confinement techniques for on-site corrosion rate measurements. Materials and Structures, 42(8), 1059–1076. doi:10.1617/s11527-008-9443-1.
[62] Brite-Euram, I. I. I. (2002). Smart Structures. Contract No. BRPR-CT98-0751: Integrated Monitoring Systems for Durability Assessment of Concrete Structures, Project Report, September, 2002.
[63] EN10002-1. (2001). Metallic materials - Tensile testing – Part 1: Method of test at ambient temperature. European Committee for Standardization. Brussels, Belgium.
[64] EN 10080. (2005). Steel for the reinforcement of concrete – Weldable reinforcing steel – General. European Committee for Standardization. Brussels, Belgium.
Copyright (c) 2024 Davor Grandic

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.