Assessment of Mechanical Properties of Corroded Reinforcement in Chloride Environment Based on Corrosion Rate Monitoring

Davor Grandić, Ivana Štimac Grandić, Paulo Šćulac

Abstract


Existing models for the evaluation of mechanical properties of corroded reinforcement, defined as a function of the mean cross-sectional loss or mass loss of the reinforcement, are not suitable in the case of chloride-induced corrosion, which causes irregular corrosion attack with pronounced localized damage—pits, whose geometry and spacing have a major influence on the mechanical properties of the reinforcement. Models that consider the irregularity of damage due to chloride corrosion are efficient, but as with models based on cross-sectional or mass loss, it is necessary to extract corroded rebars from the reinforced-concrete structure, which is a destructive procedure that can only be performed to a limited extent on an in-service building. To fill the above gaps, a new method based on the non-destructive measurement of corrosion parameters is proposed. The corrosion depth determined from the monitoring correlates directly with the remaining mechanical properties of the reinforcement; therefore, it is not necessary to determine the remaining cross-sectional area and geometry of the pits. The proposed models are based on experimental research on reinforced-concrete beam specimens subjected simultaneously to sustained loading and accelerated chloride corrosion in an environmental chamber in order to induce corrosion similar to that on real structures.

 

Doi: 10.28991/CEJ-2024-010-11-02

Full Text: PDF


Keywords


Pitting Corrosion; Corrosion Rate Monitoring; Mechanical Properties; Corroded Reinforcement; Accelerated Corrosion.

References


Gomasa, R., Talakokula, V., Kalyana Rama Jyosyula, S., & Bansal, T. (2023). A review on health monitoring of concrete structures using embedded piezoelectric sensor. Construction and Building Materials, 405, 133179. doi:10.1016/j.conbuildmat.2023.133179.

Kim, S., Jeong, Y., Kwon, M., & Kim, J. (2024). Combined deterioration effects of freeze–thaw and corrosion on the cyclic flexural behavior of RC beams. Journal of Building Engineering, 84, 108564. doi:10.1016/j.jobe.2024.108564.

Shevtsov, D., Cao, N. L., Nguyen, V. C., Nong, Q. Q., Le, H. Q., Nguyen, D. A., Zartsyn, I., & Kozaderov, O. (2022). Progress in Sensors for Monitoring Reinforcement Corrosion in Reinforced Concrete Structures—A Review. Sensors, 22(9), 3421. doi:10.3390/s22093421.

Ebell, G., Mayer, T. F., Harnisch, J., & Dauberschmidt, C. (2024). Corrosion monitoring of reinforced concrete structures: The DGZfP specification B12 Collaboration. Materials and Corrosion, 75(2), 188–196. doi:10.1002/maco.202313934.

Bras, A., van der Bergh, J. M., Mohammed, H., & Nakouti, I. (2021). Design service life of RC structures with self-healing behaviour to increase infrastructure carbon savings. Materials, 14(12), 3154. doi:10.3390/ma14123154.

Verma, S. K., Bhadauria, S. S., & Akhtar, S. (2016). In-situ condition monitoring of reinforced concrete structures. Frontiers of Structural and Civil Engineering, 10(4), 420–437. doi:10.1007/s11709-016-0336-z.

Yu, L., François, R., Dang, V. H., L’Hostis, V., & Gagné, R. (2015). Distribution of corrosion and pitting factor of steel in corroded RC beams. Construction and Building Materials, 95, 384–392. doi:10.1016/j.conbuildmat.2015.07.119.

Trejo, D., Halmen, C., & Reinschmidt, K. (2009). Corrosion performance tests for reinforcing steel in concrete: technical report. No. FHWA/TX-09/0-4825-1, Texas Transportation Institute, Bryan, United States.

Bahleda, F., Prokop, J., Koteš, P., & Wdowiak-Postulak, A. (2023). Mechanical Properties of Corroded Reinforcement. Buildings, 13(4), 855. doi:10.3390/buildings13040855.

Li, C. Q., Zheng, J. J., & Shao, L. (2003). New Solution for Prediction of Chloride Ingress in Reinforced Concrete Flexural Members. ACI Materials Journal, 100(4), 319–325. doi:10.14359/12670.

Broomfield, J.P. (2007). Corrosion of Steel in Concrete: Understanding, Investigation and Repair (2nd Ed.). CRC Press, Boca Raton, United States.

Imperatore, S. (2022). Mechanical Properties Decay of Corroded Reinforcement in Concrete—An Overview. Corrosion and Materials Degradation, 3(2), 210–220. doi:10.3390/cmd3020012.

Cairns, J., Plizzari, G. A., Du, Y., Law, D. W., & Franzoni, C. (2005). Mechanical properties of corrosion-damaged reinforcement. ACI Materials Journal, 102(4), 256–264. doi:10.14359/14619.

Imperatore, S., & Rinaldi, Z. (2008). Mechanical behaviour of corroded rebars and influence on the structural response of R/C elements. Concrete Repair, Rehabilitation and Retrofitting II (ICCRRR-2), 24–26 November 2008, Cape Town, South Africa.

Rinaldi, Z., Imperatore, S., & Valente, C. (2010). Experimental evaluation of the flexural behavior of corroded P/C beams. Construction and Building Materials, 24(11), 2267–2278. doi:10.1016/j.conbuildmat.2010.04.029.

Apostolopoulos, A., & Matikas, T. E. (2016). Corrosion of bare and embedded in concrete steel bar-impact on mechanical behavior. International Journal of Structural Integrity, 7(2), 240–259. doi:10.1108/IJSI-09-2014-0047.

Imperatore, S., Rinaldi, Z., & Drago, C. (2017). Degradation relationships for the mechanical properties of corroded steel rebars. Construction and Building Materials, 148, 219–230. doi:10.1016/j.conbuildmat.2017.04.209.

Zhu, W. (2014). Effect of corrosion on the mechanical properties of the corroded reinforcement and the residual structural performance of the corroded beams. Ph.D. Thesis, Université de Toulouse, Toulouse, France.

Yuan, Y., Ji, Y., & Shah, S. P. (2007). Comparison of two accelerated corrosion techniques for concrete structures. ACI Structural Journal, 104(3), 344–347. doi:10.14359/18624.

Grandić, D., & Bjegović, D. (2011). Reinforcement Corrosion Rate in Cracked Areas of RC-Members Subjected to Sustained Load. Modelling of Corroding Concrete Structures: Proceedings of the Joint fib-RILEM Workshop held in Madrid, Spain, 22–23 November 2010, 65–83. doi:10.1007/978-94-007-0677-4_4.

Grandić, D., Bjegović, D., & Serdar, M. (2009). Chloride threshold for different levels of reinforcement corrosion propagation. In 2nd International RILEM Workshop. Haifa, Israel, 7-9 September 2009, 416-422.

Šćulac, P., Davor, G., & Štimac Grandić, I. (2020). Degradation of tension stiffening due to corrosion-an experimental study on cracked specimens. In 2nd International Conference on Construction Materials for a Sustainable Future COMS_2020/21, 287-294.

Caprili, S., & Salvatore, W. (2018). Mechanical performance of steel reinforcing bars in uncorroded and corroded conditions. Data in Brief, 18, 1677–1695. doi:10.1016/j.dib.2018.04.072.

Hong, S., Zheng, F., Shi, G., Li, J., Luo, X., Xing, F., Tang, L., & Dong, B. (2020). Determination of impressed current efficiency during accelerated corrosion of reinforcement. Cement and Concrete Composites, 108, 103536. doi:10.1016/j.cemconcomp.2020.103536.

El Maaddawy, T., Soudki, K., & Topper, T. (2005). Long-term performance of corrosion-damaged reinforced concrete beams. ACI Structural Journal, 102(5), 649–656. doi:10.14359/14660.

Poupard, O., L’Hostis, V., Bouteiller, V., Capra, B., Catinaud, S., Francois, D., Garciaz, J.-L., Laurens, S., Luping, T., Olivier, G., & Tache, G. (2007). Corrosion diagnosis of reinforced concrete beams after 40 years exposure in marine environment by non-destructive tools. Revue Européenne de Génie Civil, 11(1–2), 35–54. doi:10.1080/17747120.2007.9692921.

Zhu, W., François, R., Poon, C. S., & Dai, J. G. (2017). Influences of corrosion degree and corrosion morphology on the ductility of steel reinforcement. Construction and Building Materials, 148, 297–306. doi:10.1016/j.conbuildmat.2017.05.079.

Zhu, W., & Francois, R. (2013). Effect of corrosion pattern on the ductility of tensile reinforcement extracted from a 26-year-old corroded beam. Advances in Concrete Construction, 1(2), 121–136. doi:10.12989/acc2013.01.2.121.

Zhu, W., & François, R. (2014). Experimental investigation of the relationships between residual cross-section shapes and the ductility of corroded bars. Construction and Building Materials, 69, 335–345. doi:10.1016/j.conbuildmat.2014.07.059.

François, R., Khan, I., & Dang, V. H. (2012). Impact of corrosion on mechanical properties of steel embedded in 27-year-old corroded reinforced concrete beams. Materials and Structures, 46(6), 899–910. doi:10.1617/s11527-012-9941-z.

Fernandez, I., & Berrocal, C. G. (2019). Mechanical Properties of 30 Year-Old Naturally Corroded Steel Reinforcing Bars. International Journal of Concrete Structures and Materials, 13(1), 9. doi:10.1186/s40069-018-0308-x.

Apostolopoulos, C. A., Demis, S., & Papadakis, V. G. (2013). Chloride-induced corrosion of steel reinforcement - Mechanical performance and pit depth analysis. Construction and Building Materials, 38, 139–146. doi:10.1016/j.conbuildmat.2012.07.087.

Alzabeebee, S., Al‑Hamd, R. K. S., Nassr, A., Kareem, M., & Keawsawasvong, S. (2023). Multiscale soft computing-based model of shear strength of steel fibre-reinforced concrete beams. Innovative Infrastructure Solutions, 8(1), 63. doi:10.1007/s41062-022-01028-y.

Morinaga, S. (1988). Prediction of service lives of reinforced concrete buildings based on the rate of corrosion. Shimizu Institute of Technology, Tokyo, Japan.

Poursaee, A., & Hansson, C. M. (2009). Potential pitfalls in assessing chloride-induced corrosion of steel in concrete. Cement and Concrete Research, 39(5), 391–400. doi:10.1016/j.cemconres.2009.01.015.

Robuschi, S., Ivanov, O. L., Geiker, M., Fernandez, I., & Lundgren, K. (2022). Impact of cracks on distribution of chloride-induced reinforcement corrosion. Materials and Structures, 56(1). doi:10.1617/s11527-022-02085-6.

Rodríguez, J., Ortega, L. M., Aragoncillo, J., Izquieredo, D., & Andrade, C. (2000). Structural assessment methodology for residual life calculation of concrete structures affected by reinforcement corrosion. International RILEM Workshop on Life Prediction and Aging Management of Concrete Structures, RILEM Publications SARL, 16-17 October, 2000, Cannes, France.

Rodríguez, J., Aragoncillo, J., Andrade, C., & Izquierdo, D. (2002). Contecvet. A validated User’s Manual for assessing the residual service life of concrete structures. Manual for assessing corrosion-affected concrete structures. EC Innovation Programme IN30902I, GEOCISA, Madrid, Spain.

Val, D. V., & Melchers, R. E. (1997). Reliability of Deteriorating RC Slab Bridges. Journal of Structural Engineering, 123(12), 1638–1644. doi:10.1061/(asce)0733-9445(1997)123:12(1638).

Stewart, M. G., & Al-Harthy, A. (2008). Pitting corrosion and structural reliability of corroding RC structures: Experimental data and probabilistic analysis. Reliability Engineering & System Safety, 93(3), 373–382. doi:10.1016/j.ress.2006.12.013.

Lay, S. & Schießl, P. (2003) Lifecon Deliverable D 3.2 - Service Life Models. Technische Universität München, München, Germany.

González, J. A., Andrade, C., Alonso, C., & Feliu, S. (1995). Comparison of rates of general corrosion and maximum pitting penetration on concrete embedded steel reinforcement. Cement and Concrete Research, 25(2), 257–264. doi:10.1016/0008-8846(95)00006-2.

Mangat, P. S., & Elgarf, M. S. (1999). Flexural strength of concrete beams with corroding reinforcement. ACI Structural Journal, 96(1), 149–158. doi:10.14359/606.

Frølund, T., Klinghoffer, O., & Poulsen, E. (2000). Rebar corrosion rate measurements for service life estimates. ACI Fall Convention, 17-18 October, Toronto, Canada.

Grandić, D., & Štimac Grandić, I. (2021). Pitting factor in use of galvanostatic pulse method for measuring the corrosion rate of reinforcement in concrete. Machines. Technologies. Materials. 15(7), 259-263.

Palsson, R., & Mirza, M. S. (2002). Mechanical response of corroded steel reinforcement of abandoned concrete bridge. ACI Structural Journal, 99(2), 157–162. doi:10.14359/11538.

Tang, F., Lin, Z., Chen, G., & Yi, W. (2014). Three-dimensional corrosion pit measurement and statistical mechanical degradation analysis of deformed steel bars subjected to accelerated corrosion. Construction and Building Materials, 70, 104–117. doi:10.1016/j.conbuildmat.2014.08.001.

Fernandez, I., Lundgren, K., & Zandi, K. (2018). Evaluation of corrosion level of naturally corroded bars using different cleaning methods, computed tomography, and 3D optical scanning. Materials and Structures, 51(3), 1-13. doi:10.1617/s11527-018-1206-z.

Chen, E., Berrocal, C. G., Fernandez, I., Löfgren, I., & Lundgren, K. (2020). Assessment of the mechanical behaviour of reinforcement bars with localised pitting corrosion by Digital Image Correlation. Engineering Structures, 219, 110936. doi:10.1016/j.engstruct.2020.110936.

Wang, X. G., Zhang, W. P., Gu, X. L., & Dai, H. C. (2013). Determination of residual cross-sectional areas of corroded bars in reinforced concrete structures using easy-to-measure variables. Construction and Building Materials, 38, 846–853. doi:10.1016/j.conbuildmat.2012.09.060.

Turnbull, A., Horner, D. A., & Connolly, B. J. (2009). Challenges in modelling the evolution of stress corrosion cracks from pits. Engineering Fracture Mechanics, 76(5), 633–640. doi:10.1016/j.engfracmech.2008.09.004.

Du, Y. G., Clark, L. A., & Chan, A. H. C. (2005). Effect of corrosion on ductility of reinforcing bars. Magazine of Concrete Research, 57(7), 407–419. doi:10.1680/macr.2005.57.7.407.

Ou, Y. C., Susanto, Y. T. T., & Roh, H. (2016). Tensile behavior of naturally and artificially corroded steel bars. Construction and Building Materials, 103, 93–104. doi:10.1016/j.conbuildmat.2015.10.075.

Finozzi, I., Saetta, A., & Budelmann, H. (2018). Structural response of reinforcing bars affected by pitting corrosion: experimental evaluation. Construction and Building Materials, 192, 478–488. doi:10.1016/j.conbuildmat.2018.10.088.

Hingorani, R., Pérez, F., Sánchez, J., Fullea, J., Andrade, C., & Tanner, P. (2013). Loss of ductility and strength of reinforcing steel due to pitting corrosion. Proceedings of the 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures, FraMCoS 2013, 2009–2018.

Grandić, D. (2008). Calculation procedures for evaluating remaining load bearing capacity and serviceability of corroded reinforced concrete structures. Ph.D. thesis. Faculty of Civil Engineering, University of Zagreb. Croatia. (in Croatian).

ASTM C1202-19. (2022). Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International, Pennsylvania, United States. doi:10.1520/C1202-19.

Ukrainczyk, V., & Bjegović, D. (1995). Materials testing in the insurance system of durability of concrete structures. Civil engineering yearbook, 209-286. (in Croatian)

Li, C. Q. (2003). Initiation of chloride-induced reinforcement corrosion in concrete structural members - Prediction. ACI Structural Journal, 100(1), 126–127. doi:10.14359/10293.

Li, C. Q. (2002). Initiation of chloride-induced reinforcement corrosion in concrete structural members - Prediction. ACI Structural Journal, 99(2), 133–141. doi:10.14359/11535.

Nygaard, P. V., Geiker, M. R., & Elsener, B. (2009). Corrosion rate of steel in concrete: Evaluation of confinement techniques for on-site corrosion rate measurements. Materials and Structures, 42(8), 1059–1076. doi:10.1617/s11527-008-9443-1.

Brite-Euram, I. I. I. (2002). Smart Structures. Contract No. BRPR-CT98-0751: Integrated Monitoring Systems for Durability Assessment of Concrete Structures, Project Report, September, 2002.

EN10002-1. (2001). Metallic materials - Tensile testing – Part 1: Method of test at ambient temperature. European Committee for Standardization. Brussels, Belgium.

EN 10080. (2005). Steel for the reinforcement of concrete – Weldable reinforcing steel – General. European Committee for Standardization. Brussels, Belgium.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-11-02

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Davor Grandic

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message