Data Mining Approach-Based Damage Identification for Asphalt Pavement Under Natural Disaster Conditions

Andri I. Rifai, Muhammad Isradi, Joewono Prasetijo, Yusra A. Sari, Muhammad F. Zolkepli

Abstract


Road performance can also decline due to natural disasters such as earthquakes, often in Indonesia. Given the high risk of natural disasters in Indonesia, it is important to consider their impact. Therefore, it is necessary to prepare for road rehabilitation and reconstruction quickly and accurately. This research aims to identify potential factors causing road damage by developing an approach to obtain predictions of road damage levels due to natural disasters by utilizing the availability of historical data, developing a decision support system to rehabilitate and reconstruct roads after disasters, and developing a road damage model due to earthquakes using data mining. The data was used to assess the condition of the national road pavement in Central Sulawesi and identified the disaster events as earthquakes that originated from the USGS. Data processing uses a data mining (DM) approach, which includes three models. The results found that the SVM modeling with the DM approach had a high accuracy rate of 0.91 ± 0.01, RMSE 0.70 ± 0.02, and MAD 0.42 ± 0.01. SVM achieves the highest accuracy after 20 runs. The best hyperparameters to accomplish a fit SVM model are ϵ = 0.07 ± 0.01 and γ = 0.05 ± 0.00. Meanwhile, for ANN, the hyperparameters are H = 3 ± 1. The earthquake’s magnitude (27%) and depth (24%) contribute to road damage.

 

Doi: 10.28991/CEJ-2024-010-12-015

Full Text: PDF


Keywords


Natural Disaster; Data Mining; Asphalt Pavement; Road Maintenance; Road Damage.

References


Liu, H., Tatano, H., Kajitani, Y., & Yang, Y. (2022). Analysis of the influencing factors on industrial resilience to flood disasters using a semi-markov recovery model: A case study of the Heavy Rain Event of July 2018 in Japan. International Journal of Disaster Risk Reduction, 82, 103384. doi:10.1016/j.ijdrr.2022.103384.

Isradi, M., Dwiatmoko, H., Prasetijo, J., Rifai, A. I., Zainal, Z. F., Zhang, G., & Firdaus, H. Y. (2024). Identification of hazardous road sites: a comparison of blackspot methodology of Narogong Road Bekasi and Johor Federal Roads. Sinergi (Indonesia), 28(2), 347–354. doi:10.22441/sinergi.2024.2.014.

Souza Almeida, L., Goerlandt, F., & Pelot, R. (2022). Trends and gaps in the literature of road network repair and restoration in the context of disaster response operations. Socio-Economic Planning Sciences, 84, 101398. doi:10.1016/j.seps.2022.101398.

Zamanifar, M., & Hartmann, T. (2021). Decision attributes for disaster recovery planning of transportation networks; A case study. Transportation Research Part D: Transport and Environment, 93, 102771. doi:10.1016/j.trd.2021.102771.

Statistik. (2024).Data Statistik Bencana SITABA, Ministry of Public Works and Housing, Jakarta, Indonesia.

Iskaputri, A., Razak, A., & Arifin, M. A. (2020). Logistics Management of the Regional Disaster Management Agency of South Sulawesi Province. Hasanuddin Journal of Public Health, 1(1), 41–50. doi:10.30597/hjph.v1i1.9511.

Hedriyanti, G., & Syamsuddin, A. B. (2021). The role of women against disaster management in the social service of southern Sulawesi province. Journal of Social Welfaism, 44(2), 21-37. (In Indonesian).

García-Alviz, J., Galindo, G., Arellana, J., & Yie-Pinedo, R. (2021). Planning road network restoration and relief distribution under heterogeneous road disruptions. OR Spectrum, 43(4), 941–981. doi:10.1007/s00291-021-00644-x.

Mao, X., Zhou, J., Yuan, C., & Liu, D. (2021). Resilience-based optimization of postdisaster restoration strategy for road networks. Journal of Advanced Transportation, 2021(1), 8871876. doi:10.1155/2021/8871876.

Liu, H., Tatano, H., Kajitani, Y., & Yang, Y. (2022). Modeling post-disaster business recovery under partially observed states: A case study of the 2011 great East Japan earthquake. Journal of Cleaner Production, 374, 133870. doi:10.1016/j.jclepro.2022.133870.

Zamanifar, M., & Hartmann, T. (2020). Optimization-based decision-making models for disaster recovery and reconstruction planning of transportation networks. Natural Hazards, 104(1), 1–25. doi:10.1007/s11069-020-04192-5.

Özerol Özman, G., Arslan Selçuk, S., & Arslan, A. (2024). Image classification on Post-Earthquake damage assessment: A case of the 2023 Kahramanmaraş earthquake. Engineering Science and Technology, an International Journal, 56, 101780. doi:10.1016/j.jestch.2024.101780.

Liu, H., Tatano, H., & Samaddar, S. (2023). Analysis of post-disaster business recovery: Differences in industrial sectors and impacts of production inputs. International Journal of Disaster Risk Reduction, 87, 103577. doi:10.1016/j.ijdrr.2023.103577.

Reis, H. C., Turk, V., Karacur, S., & Kurt, A. M. (2024). Integration of a CNN-based model and ensemble learning for detecting post-earthquake road cracks with deep features. Structures, 62, 106179. doi:10.1016/j.istruc.2024.106179.

Karimi, S., & Mirza, O. (2023). Damage identification in bridge structures: review of available methods and case studies. Australian Journal of Structural Engineering, 24(2), 89–119. doi:10.1080/13287982.2022.2120239.

Hoang, N. D., & Bui, D. T. (2018). Predicting earthquake-induced soil liquefaction based on a hybridization of kernel Fisher discriminant analysis and a least squares support vector machine: a multi-dataset study. Bulletin of Engineering Geology and the Environment, 77(1), 191–204. doi:10.1007/s10064-016-0924-0.

Cortez, P. (2010). Data Mining with Neural Networks and Support Vector Machines Using the R/rminer Tool. Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2010. Lecture Notes in Computer Science, 6171. Springer, Berlin, Germany. doi:10.1007/978-3-642-14400-4_44.

Irfan, A. I., Pereira, P., Hadiwardoyo, S. P., Correia, A. G., & Cortez, P. (2015). Implementation of Data Mining to Support Road Pavement Management System in Indonesia. Jurnal HPJI, 1(2), 93-104.

Sui, Q. R., Chen, Q. H., Wang, D. D., & Tao, Z. G. (2023). Application of machine learning to the Vs-based soil liquefaction potential assessment. Journal of Mountain Science, 20(8), 2197–2213. doi:10.1007/s11629-022-7809-4.

Kuwabara, K., Xiu, H., Shinohara, T., & Matsuoka, M. (2020). Evaluation of Liquefaction Occurrence for Large Area: A Machine Learning Approach. Proceedings of 17th World Conference on Earthquake Engineering, 1-12.

Isradi, M., Prasetijo, J., Rifai, A. I., Andraiko, H., & Zhang, G. (2024). The Prediction of Road Condition Value during Maintenance Based on Markov Process. International Journal on Advanced Science, Engineering and Information Technology, 14(3), 1083–1090. doi:10.18517/ijaseit.14.3.19475.

DGH. (2020). Road Condition Book 2020. Director of PUPR. Available online: https://www.azores.gov.pt/NR/rdonlyres/ D21CF49B-EF59-4E76-88BD-5D0EEC3A2D4F/1098978/PlanoARPLAlcool.pdf (accessed on November 2024).

Isradi, M., Prasetijo, J., Prasetyo, Y. D., Hartatik, N., & Rifai, A. I. (2023). Prediction of Service Life Base on Relationship between PSI and IRI for Flexible Pavement. Proceedings on Engineering Sciences, 5(2), 267–274. doi:10.24874/PES05.02.009.

Xu, S., Liu, Q., Bo, Y., Chen, Z., & Wang, C. (2024). Estimating the International Roughness Index of asphalt concrete pavement by response-based testing equipment and intelligent algorithms. Construction and Building Materials, 433, 136659. doi:10.1016/j.conbuildmat.2024.136659.

Kaloop, M. R., El-Badawy, S. M., Hu, J. W., & Abd El-Hakim, R. T. (2023). International Roughness Index prediction for flexible pavements using novel machine learning techniques. Engineering Applications of Artificial Intelligence, 122, 106007. doi:10.1016/j.engappai.2023.106007.

Basnet, K. S., Shrestha, J. K., & Shrestha, R. N. (2023). Pavement performance model for road maintenance and repair planning: a review of predictive techniques. Digital Transportation and Safety, 2(4), 253-267. doi:10.48130/DTS-2023-0021.

Abedi, M., Shayanfar, J., & Al-Jabri, K. (2023). Infrastructure damage assessment via machine learning approaches: a systematic review. Asian Journal of Civil Engineering, 24(8), 3823–3852. doi:10.1007/s42107-023-00748-5.

Yilmaz, M., Yalcin, E., Kifah, S., Demir, F., Sengur, A., Demir, R., & Mehmood, R. M. (2024). Improving the Classification Performance of Asphalt Cracks after Earthquake with a New Feature Selection Algorithm. IEEE Access, 12, 6604–6614. doi:10.1109/ACCESS.2023.3343619.

Trucchia, A., Izadgoshasb, H., Isnardi, S., Fiorucci, P., & Tonini, M. (2022). Machine-Learning Applications in Geosciences: Comparison of Different Algorithms and Vegetation Classes’ Importance Ranking in Wildfire Susceptibility. Geosciences, 12(11), 424. doi:10.3390/geosciences12110424.

Elhadidy, A. A., Elbeltagi, E. E., & Ammar, M. A. (2015). Optimum analysis of pavement maintenance using multi-objective genetic algorithms. HBRC Journal, 11(1), 107–113. doi:10.1016/j.hbrcj.2014.02.008.

Elhadidy, A. A., Elbeltagi, E. E., & El-Badawy, S. M. (2020). Network-Based Optimization System for Pavement Maintenance Using a Probabilistic Simulation-Based Genetic Algorithm Approach. Journal of Transportation Engineering, Part B: Pavements, 146(4), 4020069. doi:10.1061/jpeodx.0000237.

Rifai, A. I., Hendra, & Prasetyo, E. (2020). Data mining applied for liquefaction mapping and prediction learn from Palu earthquakes. Civil Engineering and Architecture, 8(4), 507–514. doi:10.13189/cea.2020.080414.

Kuhn, K. D. (2012). Pavement Network Maintenance Optimization Considering Multidimensional Condition Data. Journal of Infrastructure Systems, 18(4), 270–277. doi:10.1061/(asce)is.1943-555x.0000077.

Abaza, K. A. (2023). Stochastic-based pavement rehabilitation model at the network level with prediction uncertainty considerations. Road Materials and Pavement Design, 24(11), 2680–2698. doi:10.1080/14680629.2022.2164330.

Abaza, K. A. (2006). Iterative linear approach for nonlinear nonhomogenous stochastic pavement management models. Journal of Transportation Engineering, 132(3), 244–256. doi:10.1061/(ASCE)0733-947X(2006)132:3(244).

Preethaa, S., Natarajan, Y., Rathinakumar, A. P., Lee, D. E., Choi, Y., Park, Y. J., & Yi, C. Y. (2022). A Stacked Generalization Model to Enhance Prediction of Earthquake-Induced Soil Liquefaction. Sensors, 22(19), 7292. doi:10.3390/s22197292.

Rifai, A. I., Hadiwardoyo, S. P., Correia, A. G., Pereira, P., & Cortez, P. (2015). The data mining applied for the prediction of highway roughness due to overloaded trucks. International Journal of Technology, 6(5), 751–761. doi:10.14716/ijtech.v6i5.1186.

Guo, H., Zhuang, X., Chen, J., & Zhu, H. (2022). Predicting Earthquake-Induced Soil Liquefaction Based on Machine Learning Classifiers: A Comparative Multi-Dataset Study. International Journal of Computational Methods, 19(8), 2142004. doi:10.1142/S0219876221420044.

Ji, A., Xue, X., Wang, Y., Luo, X., & Zhang, M. (2020). An integrated multi-objectives optimization approach on modelling pavement maintenance strategies for pavement sustainability. Journal of Civil Engineering and Management, 26(8), 717–732. doi:10.3846/jcem.2020.13751.

Sindi, W., & Agbelie, B. (2020). Assignments of Pavement Treatment Options: Genetic Algorithms versus Mixed-Integer Programming. Journal of Transportation Engineering, Part B: Pavements, 146(2), 04020008. doi:10.1061/jpeodx.0000163.

Karimai, K., Liu, W., & Maruyama, Y. (2024). Prediction and Factor Analysis of Liquefaction Ground Subsidence Based on Machine-Learning Techniques. Applied Sciences (Switzerland), 14(7), 2713. doi:10.3390/app14072713.

Ramachandran, S., Rajendran, C., Veeraragavan, A., & Ramya, R. (2017). A Framework for Maintenance Management of Pavement Networks under Performance-Based Multi-Objective Optimization. Airfield and Highway Pavements 2017, 209–221. doi:10.1061/9780784480922.019.

Yu, B., Gu, X., Ni, F., & Guo, R. (2015). Multi-objective optimization for asphalt pavement maintenance plans at project level: Integrating performance, cost and environment. Transportation Research Part D: Transport and Environment, 41, 64–74. doi:10.1016/j.trd.2015.09.016.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-12-015

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Andri Irfan Rifai, Muhammad Isradi, Joewono Prasetijo, Yusra Aulia Sari

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message