Data Mining Approach-Based Damage Identification for Asphalt Pavement Under Natural Disaster Conditions
Abstract
Doi: 10.28991/CEJ-2024-010-12-015
Full Text: PDF
Keywords
References
Liu, H., Tatano, H., Kajitani, Y., & Yang, Y. (2022). Analysis of the influencing factors on industrial resilience to flood disasters using a semi-markov recovery model: A case study of the Heavy Rain Event of July 2018 in Japan. International Journal of Disaster Risk Reduction, 82, 103384. doi:10.1016/j.ijdrr.2022.103384.
Isradi, M., Dwiatmoko, H., Prasetijo, J., Rifai, A. I., Zainal, Z. F., Zhang, G., & Firdaus, H. Y. (2024). Identification of hazardous road sites: a comparison of blackspot methodology of Narogong Road Bekasi and Johor Federal Roads. Sinergi (Indonesia), 28(2), 347–354. doi:10.22441/sinergi.2024.2.014.
Souza Almeida, L., Goerlandt, F., & Pelot, R. (2022). Trends and gaps in the literature of road network repair and restoration in the context of disaster response operations. Socio-Economic Planning Sciences, 84, 101398. doi:10.1016/j.seps.2022.101398.
Zamanifar, M., & Hartmann, T. (2021). Decision attributes for disaster recovery planning of transportation networks; A case study. Transportation Research Part D: Transport and Environment, 93, 102771. doi:10.1016/j.trd.2021.102771.
Statistik. (2024).Data Statistik Bencana SITABA, Ministry of Public Works and Housing, Jakarta, Indonesia.
Iskaputri, A., Razak, A., & Arifin, M. A. (2020). Logistics Management of the Regional Disaster Management Agency of South Sulawesi Province. Hasanuddin Journal of Public Health, 1(1), 41–50. doi:10.30597/hjph.v1i1.9511.
Hedriyanti, G., & Syamsuddin, A. B. (2021). The role of women against disaster management in the social service of southern Sulawesi province. Journal of Social Welfaism, 44(2), 21-37. (In Indonesian).
García-Alviz, J., Galindo, G., Arellana, J., & Yie-Pinedo, R. (2021). Planning road network restoration and relief distribution under heterogeneous road disruptions. OR Spectrum, 43(4), 941–981. doi:10.1007/s00291-021-00644-x.
Mao, X., Zhou, J., Yuan, C., & Liu, D. (2021). Resilience-based optimization of postdisaster restoration strategy for road networks. Journal of Advanced Transportation, 2021(1), 8871876. doi:10.1155/2021/8871876.
Liu, H., Tatano, H., Kajitani, Y., & Yang, Y. (2022). Modeling post-disaster business recovery under partially observed states: A case study of the 2011 great East Japan earthquake. Journal of Cleaner Production, 374, 133870. doi:10.1016/j.jclepro.2022.133870.
Zamanifar, M., & Hartmann, T. (2020). Optimization-based decision-making models for disaster recovery and reconstruction planning of transportation networks. Natural Hazards, 104(1), 1–25. doi:10.1007/s11069-020-04192-5.
Özerol Özman, G., Arslan Selçuk, S., & Arslan, A. (2024). Image classification on Post-Earthquake damage assessment: A case of the 2023 Kahramanmaraş earthquake. Engineering Science and Technology, an International Journal, 56, 101780. doi:10.1016/j.jestch.2024.101780.
Liu, H., Tatano, H., & Samaddar, S. (2023). Analysis of post-disaster business recovery: Differences in industrial sectors and impacts of production inputs. International Journal of Disaster Risk Reduction, 87, 103577. doi:10.1016/j.ijdrr.2023.103577.
Reis, H. C., Turk, V., Karacur, S., & Kurt, A. M. (2024). Integration of a CNN-based model and ensemble learning for detecting post-earthquake road cracks with deep features. Structures, 62, 106179. doi:10.1016/j.istruc.2024.106179.
Karimi, S., & Mirza, O. (2023). Damage identification in bridge structures: review of available methods and case studies. Australian Journal of Structural Engineering, 24(2), 89–119. doi:10.1080/13287982.2022.2120239.
Hoang, N. D., & Bui, D. T. (2018). Predicting earthquake-induced soil liquefaction based on a hybridization of kernel Fisher discriminant analysis and a least squares support vector machine: a multi-dataset study. Bulletin of Engineering Geology and the Environment, 77(1), 191–204. doi:10.1007/s10064-016-0924-0.
Cortez, P. (2010). Data Mining with Neural Networks and Support Vector Machines Using the R/rminer Tool. Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2010. Lecture Notes in Computer Science, 6171. Springer, Berlin, Germany. doi:10.1007/978-3-642-14400-4_44.
Irfan, A. I., Pereira, P., Hadiwardoyo, S. P., Correia, A. G., & Cortez, P. (2015). Implementation of Data Mining to Support Road Pavement Management System in Indonesia. Jurnal HPJI, 1(2), 93-104.
Sui, Q. R., Chen, Q. H., Wang, D. D., & Tao, Z. G. (2023). Application of machine learning to the Vs-based soil liquefaction potential assessment. Journal of Mountain Science, 20(8), 2197–2213. doi:10.1007/s11629-022-7809-4.
Kuwabara, K., Xiu, H., Shinohara, T., & Matsuoka, M. (2020). Evaluation of Liquefaction Occurrence for Large Area: A Machine Learning Approach. Proceedings of 17th World Conference on Earthquake Engineering, 1-12.
Isradi, M., Prasetijo, J., Rifai, A. I., Andraiko, H., & Zhang, G. (2024). The Prediction of Road Condition Value during Maintenance Based on Markov Process. International Journal on Advanced Science, Engineering and Information Technology, 14(3), 1083–1090. doi:10.18517/ijaseit.14.3.19475.
DGH. (2020). Road Condition Book 2020. Director of PUPR. Available online: https://www.azores.gov.pt/NR/rdonlyres/ D21CF49B-EF59-4E76-88BD-5D0EEC3A2D4F/1098978/PlanoARPLAlcool.pdf (accessed on November 2024).
Isradi, M., Prasetijo, J., Prasetyo, Y. D., Hartatik, N., & Rifai, A. I. (2023). Prediction of Service Life Base on Relationship between PSI and IRI for Flexible Pavement. Proceedings on Engineering Sciences, 5(2), 267–274. doi:10.24874/PES05.02.009.
Xu, S., Liu, Q., Bo, Y., Chen, Z., & Wang, C. (2024). Estimating the International Roughness Index of asphalt concrete pavement by response-based testing equipment and intelligent algorithms. Construction and Building Materials, 433, 136659. doi:10.1016/j.conbuildmat.2024.136659.
Kaloop, M. R., El-Badawy, S. M., Hu, J. W., & Abd El-Hakim, R. T. (2023). International Roughness Index prediction for flexible pavements using novel machine learning techniques. Engineering Applications of Artificial Intelligence, 122, 106007. doi:10.1016/j.engappai.2023.106007.
Basnet, K. S., Shrestha, J. K., & Shrestha, R. N. (2023). Pavement performance model for road maintenance and repair planning: a review of predictive techniques. Digital Transportation and Safety, 2(4), 253-267. doi:10.48130/DTS-2023-0021.
Abedi, M., Shayanfar, J., & Al-Jabri, K. (2023). Infrastructure damage assessment via machine learning approaches: a systematic review. Asian Journal of Civil Engineering, 24(8), 3823–3852. doi:10.1007/s42107-023-00748-5.
Yilmaz, M., Yalcin, E., Kifah, S., Demir, F., Sengur, A., Demir, R., & Mehmood, R. M. (2024). Improving the Classification Performance of Asphalt Cracks after Earthquake with a New Feature Selection Algorithm. IEEE Access, 12, 6604–6614. doi:10.1109/ACCESS.2023.3343619.
Trucchia, A., Izadgoshasb, H., Isnardi, S., Fiorucci, P., & Tonini, M. (2022). Machine-Learning Applications in Geosciences: Comparison of Different Algorithms and Vegetation Classes’ Importance Ranking in Wildfire Susceptibility. Geosciences, 12(11), 424. doi:10.3390/geosciences12110424.
Elhadidy, A. A., Elbeltagi, E. E., & Ammar, M. A. (2015). Optimum analysis of pavement maintenance using multi-objective genetic algorithms. HBRC Journal, 11(1), 107–113. doi:10.1016/j.hbrcj.2014.02.008.
Elhadidy, A. A., Elbeltagi, E. E., & El-Badawy, S. M. (2020). Network-Based Optimization System for Pavement Maintenance Using a Probabilistic Simulation-Based Genetic Algorithm Approach. Journal of Transportation Engineering, Part B: Pavements, 146(4), 4020069. doi:10.1061/jpeodx.0000237.
Rifai, A. I., Hendra, & Prasetyo, E. (2020). Data mining applied for liquefaction mapping and prediction learn from Palu earthquakes. Civil Engineering and Architecture, 8(4), 507–514. doi:10.13189/cea.2020.080414.
Kuhn, K. D. (2012). Pavement Network Maintenance Optimization Considering Multidimensional Condition Data. Journal of Infrastructure Systems, 18(4), 270–277. doi:10.1061/(asce)is.1943-555x.0000077.
Abaza, K. A. (2023). Stochastic-based pavement rehabilitation model at the network level with prediction uncertainty considerations. Road Materials and Pavement Design, 24(11), 2680–2698. doi:10.1080/14680629.2022.2164330.
Abaza, K. A. (2006). Iterative linear approach for nonlinear nonhomogenous stochastic pavement management models. Journal of Transportation Engineering, 132(3), 244–256. doi:10.1061/(ASCE)0733-947X(2006)132:3(244).
Preethaa, S., Natarajan, Y., Rathinakumar, A. P., Lee, D. E., Choi, Y., Park, Y. J., & Yi, C. Y. (2022). A Stacked Generalization Model to Enhance Prediction of Earthquake-Induced Soil Liquefaction. Sensors, 22(19), 7292. doi:10.3390/s22197292.
Rifai, A. I., Hadiwardoyo, S. P., Correia, A. G., Pereira, P., & Cortez, P. (2015). The data mining applied for the prediction of highway roughness due to overloaded trucks. International Journal of Technology, 6(5), 751–761. doi:10.14716/ijtech.v6i5.1186.
Guo, H., Zhuang, X., Chen, J., & Zhu, H. (2022). Predicting Earthquake-Induced Soil Liquefaction Based on Machine Learning Classifiers: A Comparative Multi-Dataset Study. International Journal of Computational Methods, 19(8), 2142004. doi:10.1142/S0219876221420044.
Ji, A., Xue, X., Wang, Y., Luo, X., & Zhang, M. (2020). An integrated multi-objectives optimization approach on modelling pavement maintenance strategies for pavement sustainability. Journal of Civil Engineering and Management, 26(8), 717–732. doi:10.3846/jcem.2020.13751.
Sindi, W., & Agbelie, B. (2020). Assignments of Pavement Treatment Options: Genetic Algorithms versus Mixed-Integer Programming. Journal of Transportation Engineering, Part B: Pavements, 146(2), 04020008. doi:10.1061/jpeodx.0000163.
Karimai, K., Liu, W., & Maruyama, Y. (2024). Prediction and Factor Analysis of Liquefaction Ground Subsidence Based on Machine-Learning Techniques. Applied Sciences (Switzerland), 14(7), 2713. doi:10.3390/app14072713.
Ramachandran, S., Rajendran, C., Veeraragavan, A., & Ramya, R. (2017). A Framework for Maintenance Management of Pavement Networks under Performance-Based Multi-Objective Optimization. Airfield and Highway Pavements 2017, 209–221. doi:10.1061/9780784480922.019.
Yu, B., Gu, X., Ni, F., & Guo, R. (2015). Multi-objective optimization for asphalt pavement maintenance plans at project level: Integrating performance, cost and environment. Transportation Research Part D: Transport and Environment, 41, 64–74. doi:10.1016/j.trd.2015.09.016.
DOI: 10.28991/CEJ-2024-010-12-015
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Andri Irfan Rifai, Muhammad Isradi, Joewono Prasetijo, Yusra Aulia Sari
This work is licensed under a Creative Commons Attribution 4.0 International License.