Analysis of Climate Change Scenarios Using the LARS-WG 8 Model Based on Precipitation and Temperature Trends
Abstract
Doi: 10.28991/CEJ-2024-010-12-014
Full Text: PDF
Keywords
References
Oo, H. T., Zin, W. W., & Kyi, C. C. T. (2019). Assessment of Future Climate Change Projections Using Multiple Global Climate Models. Civil Engineering Journal (Iran), 5(10), 2152–2166. doi:10.28991/cej-2019-03091401.
Kundu, A., Dwivedi, S., & Chandra, V. (2014). Precipitation Trend Analysis over Eastern Region of India Using Cmip5 Based Climatic Models. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL–8, 1437–1442. doi:10.5194/isprsarchives-xl-8-1437-2014.
USAID. (2017). Climate Risk Profile: Iraq. United States Agency for International Development (USAID), Washington, United States. Available online: https://www.climatelinks.org/resources/climate-change-risk-profile-iraq (accessed on November 2024).
Cooke, K. (2018). Iraq’s climate stresses are set to worsen. PreventionWeb, Geneva, Switzerland. Available online: https://www.preventionweb.net/news/iraqs-climate-stresses-are-set-worsen (accessed on November 2024).
Agence France Presse. (2018). Iraq’s cultivated areas reduced by half as drought tightens grip. Agence France Presse, Paris, France. Available online: https://www.thenationalnews.com/world/mena/iraq-s-cultivated-areas-reduced-by-half-as-drought-tightens-grip-1.756996 (accessed on November 2024).
United Nations Iraq. (2020). Iraq mulls tackling its methane problem and reaping major benefits along the way. United Nations Iraq, Baghdad, Iraq. Available online: https://www.uniraq.org/index.php?option=com_k2&view=item&id=12935:iraq-mulls-tackling-its-methane-problem-and-reaping-major-benefits-along-the-way&Itemid=605〈=en (accessed on November 2024).
Ritchie, H., Roser, M., & Rosado, P. (2020). CO₂ and greenhouse gas emissions. Our world in data, Oxford, United Kingdom.
Masson-Delmotte, V. P., Zhai, P., Pirani, S. L., Connors, C., Péan, S., Berger, N., ... & Scheel Monteiro, P. M. (2021). IPCC, 2021: Summary for policymakers. in: Climate change 2021: The physical science basis. contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, United States.
Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., ... & Zommers, Z. (2023). Climate change 2023: synthesis report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change. The Australian National University, Canberra, Australia.
Waha, K., Krummenauer, L., Adams, S., Aich, V., Baarsch, F., Coumou, D., Fader, M., Hoff, H., Jobbins, G., Marcus, R., Mengel, M., Otto, I. M., Perrette, M., Rocha, M., Robinson, A., & Schleussner, C. F. (2017). Climate change impacts in the Middle East and Northern Africa (MENA) region and their implications for vulnerable population groups. Regional Environmental Change, 17(6), 1623–1638. doi:10.1007/s10113-017-1144-2.
Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., Blanco, G., Cheung, W. W. L., Connors, S., Denton, F., Diongue-Niang, A., … Ha, M. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland. doi:10.59327/ipcc/ar6-9789291691647.
Stepanyan, V., Abdih, Y., Al-Hassan, A., Gerling, K., Saksonovs, S., Baum, A., Anderson, G., Agoumi, L., Andaloussi, M., Chen, C., Sakha, S., Saliba, F., Sanchez, J., & Duenwald, C. (2022). Feeling the Heat: Adapting to Climate Change in the Middle East and Central Asia. Departmental Papers, 2022(008), 1. doi:10.5089/9781513591094.087.
IPCC. (2021). Summary for Policymakers. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, United States. doi:10.1017/9781009157896.001.
Phuong, D. N. D., Duong, T. Q., Liem, N. D., Tram, V. N. Q., Cuong, D. K., & Loi, N. K. (2020). Projections of future climate change in the VU Gia Thu Bon river basin, Vietnam by using statistical downscaling model (SDSM). Water (Switzerland), 12(3), 755. doi:10.3390/w12030755.
Semenov, M. A., & Barrow, E. M. (2002). A stochastic weather generator for use in climate impact studies. User Man Herts United Kingdom.
Wilby, R. L., Dawson, C. W., & Barrow, E. M. (2007). Statistical downscaling model (SDSM), version 4.2. Department of Geography, Lancaster University, Lancashire, United Kingdom.
Gao, C., He, Z., Pan, S., Xuan, W., & Xu, Y. P. (2020). Effects of climate change on peak runoff and flood levels in Qu River Basin, East China. Journal of Hydro-Environment Research, 28, 34–47. doi:10.1016/j.jher.2018.02.005.
Navid, S., Jahansouz, M., Soufizadeh, S., & Ghafari, M. (2024). Predicting the Changes of Climatic Parameters in Alborz Province by Using the LARS-WG Model with Risk Management Approach. The Quarterly Journal of Insurance & Agriculture (QJIA), 13(1), 1-18.
Jimenez Osorio, D. A., Menapace, A., Zanfei, A., de Andrade Pinto, E. J., & Brentan, B. (2023). Statistical and Machine Learning Downscaling Methods to Assess Changes to Rainfall Amounts and Frequency in Climate Change Context - CMIP 6. doi:10.5194/hess-2023-55.
Mukheef, R. A. H., Hassan, W. H., & Alquzweeni, S. (2024). Projections of temperature and precipitation trends using CMhyd under CMIP6 scenarios: A case study of Iraq’s Middle and West. Atmospheric Research, 306, 107470. doi:10.1016/j.atmosres.2024.107470.
Kh. Muhaisen, N., Sh. Khayyun, T., Mukhtar, M. Al, & Hassan, W. H. (2024). Forecasting changes in precipitation and temperatures of a regional watershed in Northern Iraq using LARS-WG model. Open Engineering, 14(1), 20220567. doi:10.1515/eng-2022-0567.
Mohammed, R., & Scholz, M. (2024). Climate Change Scenarios for Impact Assessment: Lower Zab River Basin (Iraq and Iran). Atmosphere, 15(6), 673. doi:10.3390/atmos15060673.
Osman, Y., Abdellatif, M., Al-Ansari, N., Knutsson, S., & Jawad, S. (2017). Climate change and future precipitation in an arid environment of the MIDDLE EAST: CASE study of Iraq. Journal of Environmental Hydrology, 25(3), 1-21.
Kriegler, E., O’Neill, B. C., Hallegatte, S., Kram, T., Lempert, R. J., Moss, R. H., & Wilbanks, T. (2012). The need for and use of socio-economic scenarios for climate change analysis: A new approach based on shared socio-economic pathways. Global Environmental Change, 22(4), 807–822. doi:10.1016/j.gloenvcha.2012.05.005.
O’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., Mathur, R., & van Vuuren, D. P. (2013). A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change, 122(3), 387–400. doi:10.1007/s10584-013-0905-2.
Van Vuuren, D. P., Riahi, K., Moss, R., Edmonds, J., Thomson, A., Nakicenovic, N., Kram, T., Berkhout, F., Swart, R., Janetos, A., Rose, S. K., & Arnell, N. (2012). A proposal for a new scenario framework to support research and assessment in different climate research communities. Global Environmental Change, 22(1), 21–35. doi:10.1016/j.gloenvcha.2011.08.002.
Mohammed, Z. M., & Hassan, W. H. (2022). Climate change and the projection of future temperature and precipitation in southern Iraq using a LARS-WG model. Modeling Earth Systems and Environment, 8(3), 4205–4218. doi:10.1007/s40808-022-01358-x.
Hassan, W. H., Nile, B. K., Kadhim, Z. K., Mahdi, K., Riksen, M., & Thiab, R. F. (2023). Trends, forecasting and adaptation strategies of climate change in the middle and west regions of Iraq. SN Applied Sciences, 5(12), 312. doi:10.1007/s42452-023-05544-z.
Lee, J. Y., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J. P., ... & Zhou, T. (2021). Future global climate: scenario-based projections and near-term information. In Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom.
FAO. (2024). Enhancing Climate-Resilient Agriculture in Southern Iraq. Food and Agriculture organization of the United Nations (FAO), Rome, Italy. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/29700ecb-bfc4-4de9-bb2e-efbf88c1f178/content (accessed on November 2024).
Saud, S., Wang, D., Fahad, S., Alharby, H. F., Bamagoos, A. A., Mjrashi, A., Alabdallah, N. M., AlZahrani, S. S., AbdElgawad, H., Adnan, M., Sayyed, R. Z., Ali, S., & Hassan, S. (2022). Comprehensive Impacts of Climate Change on Rice Production and Adaptive Strategies in China. Frontiers in Microbiology, 13, 926059. doi:10.3389/fmicb.2022.926059.
Ali, S. H., Qubaa, A. R., & Al-Khayat, A. B. M. (2024). Climate Change and its Potential Impacts on Iraqi Environment: Overview. IOP Conference Series: Earth and Environmental Science, 1300(1), 12010. doi:10.1088/1755-1315/1300/1/012010.
Berkofsky, L. (2019). Desert Meteorology. Settling the Desert, 97–116. Cambridge University Press, Cambridge, United Kingdom. doi:10.4324/9780429287886-8.
Rahimi, M., Yazdani, M. R., Asadi, M., & Karem, A. (2014). Temporal and spatial variability of dust storm events in West Asia (Iran and Iraq border). International Journal of Civil and Environmental Research, 1(3), 100–109.
Al-Ansari, N. (2020). Topography and Climate of Iraq. Journal of Earth Sciences and Geotechnical Engineering, 11(2), 1–13. doi:10.47260/jesge/1121.
Al-Ansari, N., & Knutsson, S. (2011). Toward Prudent management of Water Resources in Iraq. Journal of Advanced Science and Engineering Research, 1(1), 53–67.
Zandwijk, A., Monji, F., Mento, L., Opstal, R., Mahdi, I. K., & Snertlage, J. (2021). Water and Saline Agriculture in Central-Southern Iraq- A scoping study on the conditions, solutions, and actors in the field of saline farming. Dutch Embassy, Bagdad, Iraq.
Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644. doi:10.5194/hess-11-1633-2007.
Birpınar, M. E., Kızılöz, B., & Şişman, E. (2023). Classic trend analysis methods’ paradoxical results and innovative trend analysis methodology with percentile ranges. Theoretical and Applied Climatology, 153(1–2), 1–18. doi:10.1007/s00704-023-04449-6.
Esit, M. (2023). Investigation of innovative trend approaches (ITA with significance test and IPTA) comparing to the classical trend method of monthly and annual hydrometeorological variables: A case study of Ankara region, Turkey. Journal of Water and Climate Change, 14(1), 305–329. doi:10.2166/wcc.2022.356.
Dong, Z., Jia, W., Sarukkalige, R., Fu, G., Meng, Q., & Wang, Q. (2020). Innovative trend analysis of air temperature and precipitation in the jinsha river basin, china. Water (Switzerland), 12(11), 3293. doi:10.3390/w12113293.
Mann, H. B. (1945). Nonparametric Tests Against Trend. Econometrica, 13(3), 245. doi:10.2307/1907187.
Kendall, M.G. (1975) Rank Correlation Methods (4th Ed.). Charles Griffin, London, United Kingdom.
Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379–1389. doi:10.1080/01621459.1968.10480934.
Praveen, B., Talukdar, S., Shahfahad, Mahato, S., Mondal, J., Sharma, P., Islam, A. R. M. T., & Rahman, A. (2020). Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Scientific Reports, 10(1), 10342. doi:10.1038/s41598-020-67228-7.
He, M., & Gautam, M. (2016). Variability and trends in precipitation, temperature and drought indices in the state of California. Hydrology, 3(2), 14. doi:10.3390/hydrology3020014.
Semenov, M. A., & Stratonovitch, P. (2015). Adapting wheat ideotypes for climate change: Accounting for uncertainties in CMIP5 climate projections. Climate Research, 65, 123–139. doi:10.3354/cr01297.
Ferreira, G. W. de S., Reboita, M. S., Ribeiro, J. G. M., & de Souza, C. A. (2023). Assessment of Precipitation and Hydrological Droughts in South America through Statistically Downscaled CMIP6 Projections. Climate, 11(8), 166. doi:10.3390/cli11080166.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. doi:10.13031/2013.23153.
Disasa, K. N., Yan, H., Wang, G., Zhang, J., Zhang, C., Zhu, X., Xue, R., Wang, B., & Bao, R. (2024). Trend Analysis and Projection of Climate Variables Using the LARS-WG Model in Coastal Areas of China, Researchsquare (Preprint), 1-38. doi:10.21203/rs.3.rs-4015632/v1.
Hashim, B. M., Alnaemi, A. N. A., Hussain, B. A., Abduljabbar, S. A., Doost, Z. H., & Yaseen, Z. M. (2024). Statistical downscaling of future temperature and precipitation projections in Iraq under climate change scenarios. Physics and Chemistry of the Earth, 135, 103647. doi:10.1016/j.pce.2024.103647.
Daba, M. H., Ayele, G. T., & You, S. (2020). Long-term homogeneity and trends of hydroclimatic variables in upper awash river basin, Ethiopia. Advances in Meteorology, 2020(1), 8861959. doi:10.1155/2020/8861959.
Daba, M. H., & You, S. (2020). Assessment of climate change impacts on river flow regimes in the upstream of Awash basin, Ethiopia: Based on IPCC fifth assessment report (AR5) climate change scenarios. Hydrology, 7(4), 1–22. doi:10.3390/hydrology7040098.
DOI: 10.28991/CEJ-2024-010-12-014
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 saad hakim hadi
This work is licensed under a Creative Commons Attribution 4.0 International License.