Assessment of Fluid Forces on Flooded Bridge Superstructures Using the SPH Method
Abstract
Doi: 10.28991/CEJ-2024-010-12-019
Full Text: PDF
Keywords
References
Cao, M. X., Liu, Z., & Meng, J. (2009). Statistical analysis and reflections on bridge deficiencies and disasters in the United States. Highway, 7(7), 162-167.
Storey, C., & Delatte, N. (2003). Lessons from the Collapse of the Schoharie Creek Bridge. Forensic Engineering (2003), 158–167. doi:10.1061/40692(241)18.
Sousa, J. J., & Bastos, L. (2013). Multi-temporal SAR interferometry reveals acceleration of bridge sinking before collapse. Natural Hazards and Earth System Science, 13(3), 659–667. doi:10.5194/nhess-13-659-2013.
Saatcioglu, M., Ghobarah, A., & Nistor, I. (2006). Performance of structures in Thailand during the December 2004 Great Sumatra earthquake and Indian Ocean tsunami. Earthquake Spectra, 22(SUPPL. 3), 295–319. doi:10.1193/1.2209175.
Kawashima, K., Kosa, K., Takahashi, Y., Akiyama, M., Nishioka, T., Watanabe, G., ... & Matsuzaki, H. (2011). Damages of bridges during 2011 Great East Japan earthquake. Proceedings of 43rd Joint Meeting, US-Japan Panel on Wind and Seismic Effects, 29-30 August, Tsukuba Science City, Japan.
Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225. doi:10.1016/0021-9991(81)90145-5.
Xiao, H., Huang, W., Tao, J., & Liu, C. (2013). Numerical modeling of wave-current forces acting on horizontal cylinder of marine structures by VOF method. Ocean Engineering, 67, 58–67. doi:10.1016/j.oceaneng.2013.01.027.
Nan, X., Liu, X., Chen, L., Yan, Q., & Li, J. (2023). Study of the bridge damage during flooding based on a coupled VOF-FSI method. Journal of Engineering Research (Kuwait), 11(3), 51–61. doi:10.1016/j.jer.2023.100081.
Song, Y., Jia, J., Liu, H., Chen, F., & Fang, Q. (2023). Numerical Study on Tsunami Force on Coastal Bridge Decks with Superelevation. Journal of Marine Science and Engineering, 11(4), 824. doi:10.3390/jmse11040824.
Tang, C., Zhao, Q., Wang, L., Chen, Z., & Fang, Q. (2024). Numerical Investigation of Wave Force on Coastal Bridge Decks Close to a Sloping Seabed. Journal of Marine Science and Engineering, 12(6), 984. doi:10.3390/jmse12060984.
Han, W., Xu, X., Wang, J., Xiao, L., Zhou, K., & Guo, X. (2023). Safety Assessment of Coastal Bridge Superstructures with Box Girders under Potential Landslide Tsunamis. Journal of Marine Science and Engineering, 11(5). doi:10.3390/jmse11051062.
Wang, S., Liu, S., Xiang, C., Li, M., Yang, Z., & Huang, B. (2023). Prediction of Wave Forces on the Box-Girder Superstructure of the Offshore Bridge with the Influence of Floating Breakwater. Journal of Marine Science and Engineering, 11(7), 1326. doi:10.3390/jmse11071326.
Kisi, O., Ardiçlioğlu, M., Hadi, A. M. W., Kuriqi, A., & Kulls, C. (2023). Estimation of Mean Velocity Upstream and Downstream of a Bridge Model Using Metaheuristic Regression Methods. Water Resources Management, 37(14), 5559–5580. doi:10.1007/s11269-023-03618-6.
Kosa, K., Akiyosi, S., Nii, S., & Kimura, K. (2017). Experimental study to evaluate the horizontal force to the bridge by tsunami, Kozo Kogaku Ronbunshu. Journal of Structural Engineering, 57.
Liang, T., Ohmachi, T., Inoue, S., & Lukkunaprasit, P. (2011). Experimental and Numerical Modeling of Tsunami Force on Bridge Decks. In Tsunami - A Growing Disaster (pp. 105–130). doi:10.5772/23622.
Zhang, G., Usui, T., & Hoshikuma, J. (2010). Experimental Study on a Countermeasure for Reducing Tsunami Wave Force Acting on Superstructure of Bridges. Journal of Japan Society of Civil Engineers, Ser. A1 (Structural Engineering & Earthquake Engineering (SE/EE)), 66(1), 425–433. doi:10.2208/jscejseee.66.425.
Gingold, R. A., & Monaghan, J. J. (1977). Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181(3), 375–389. doi:10.1093/mnras/181.3.375.
Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. The Astronomical Journal, 82, 1013. doi:10.1086/112164.
Nguyen, Q. B. (2009). Reliability of industrial installations under impact of structural fragments - Domino effect. Ph.D. Thesis, Paris, France. (In French).
Xu, F., Zhao, Y., Yan, R., & Furukawa, T. (2013). Multidimensional discontinuous SPH method and its application to metal penetration analysis. International Journal for Numerical Methods in Engineering, 93(11), 1125–1146. doi:10.1002/nme.4414.
Shintate, K., & Sekine, H. (2004). Numerical simulation of hypervelocity impacts of a projectile on laminated composite plate targets by means of improved SPH method. Composites Part A: Applied Science and Manufacturing, 35(6), 683–692. doi:10.1016/j.compositesa.2004.02.011.
Zhu, M., Elkhetali, I., & Scott, M. H. (2018). Validation of OpenSees for Tsunami Loading on Bridge Superstructures. Journal of Bridge Engineering, 23(4), 4018015. doi:10.1061/(asce)be.1943-5592.0001221.
Do, T. A., Nguyen, T. H., Nguyen, H. M., Tran, N. D., & Nguyen, L. N. (2020). Evaluation of dynamic impact of flow with bridge pier using smoothed particle hydrodynamics method. Progress in Computational Fluid Dynamics, 20(6), 332–348. doi:10.1504/PCFD.2020.111401.
Nguyen-Ngoc, L., Do, T. A., Nguyen, T. H., Nguyen, T. D., Tran, A. T., Ho, N. X., & Nguyen, D. H. (2023). Smoothed Particle Hydrodynamics Simulation and Evaluation of Water Flow Pressure on Bridge Piers. Journal of Applied Science and Engineering, 26(10), 1471–1479. doi:10.6180/jase.202310_26(10).0012.
Nguyen, H. T., Cosson, B., Lacrampe, M. F., & Do, T. A. (2018). Numerical simulation of reactive polymer flow during rotational molding using smoothed particle hydrodynamics method and experimental verification. International Journal of Material Forming, 11(4), 583–592. doi:10.1007/s12289-017-1367-2.
Nguyen, H. T., Do, T. A., & Cosson, B. (2019). Numerical simulation of submerged flow bridge scour under dam-break flow using multi-phase SPH method. Mathematical Biosciences and Engineering, 16(5), 5395–5418. doi:10.3934/mbe.2019269.
Shao, S., & Lo, E. Y. M. (2003). Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Advances in Water Resources, 26(7), 787–800. doi:10.1016/S0309-1708(03)00030-7.
Nakao, H., Zhang, G., Sumimura, T., & Hoshikuma, J. I. (2013). Numerical assessment of tsunami-induced effect on bridge behavior. Proceedings of the 29th US-Japan Bridge Engineering Workshop, 11-13, November, Tsukuba, Japan.
Wong, H. K. (2015). Three-dimensional effects of tsunami impact on bridges. Master Thesis, University of Washington, Seattle, United States.
Kerenyi, K., Sofu, T., & Guo, J. (2009). Hydrodynamic forces on inundated bridge decks. FHWA-HRT-09-028, United States Department of Transportation, McLean, United States.
Wei, Z., Dalrymple, R. A., Hérault, A., Bilotta, G., Rustico, E., & Yeh, H. (2015). SPH modeling of dynamic impact of tsunami bore on bridge piers. Coastal Engineering, 104, 26–42. doi:10.1016/j.coastaleng.2015.06.008.
Pringgana, G., Cunningham, L. S., & Rogers, B. D. (2016). Modelling of tsunami-induced bore and structure interaction. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 169(3), 109–125. doi:10.1680/jencm.15.00020.
Dalrymple, R. A., & Rogers, B. D. (2006). Numerical modeling of water waves with the SPH method. Coastal Engineering, 53(2–3), 141–147. doi:10.1016/j.coastaleng.2005.10.004.
Gotoh, H., Shao, S., & Memita, T. (2004). SPH-LES model for numerical investigation of wave interaction with partially immersed breakwater. Coastal Engineering Journal, 46(1), 39–63. doi:10.1142/S0578563404000872.
Ata, R., & Soulaïmani, A. (2005). A stabilized SPH method for inviscid shallow water flows. International Journal for Numerical Methods in Fluids, 47(2), 139–159. doi:10.1002/fld.801.
Courant, R., Friedrichs, K., & Lewy, H. (1928). On the partial difference equations of mathematical physics. Mathematische Annalen, 100(1), 32–74. doi:10.1007/BF01448839.
AS 5100.1-2004 AP-G15.1/04. (2004). Bridge Design, Part 1: Scope and General Principles. Australian Standard, Sydney, Australia.
B. 59/94. (1994). Design of highway bridges for hydraulic action (Part 6). The Scottish Office development Department, The Welsh office, The Department of the Environment for Northern Ireland, Belfast, Northern Ireland.
TCVN11823:2017. (2017). Highway bridge design specification. Vietnam Standards, Hanoi, Vietnam. (In Vietnamese).
IRC:58-2015. (2015). Guidelines for the Design of Plain Jointed Rigid Pavements for Highway (4th Ed.). Indian Roads Congress, New Delhi, India.
Guo, J., Kerenyi, K., Pagan-Ortiz, J. E., Flora, K., Lyn, D., & Bergendahl, B. (2009). Bridge Pressure Flow Scour for Clear Water Conditions. FHWA-HRT-09-041, United States Department of Transportation, McLean, United States.
DOI: 10.28991/CEJ-2024-010-12-019
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Tu Anh Do, Thuan Huu Nguyen
This work is licensed under a Creative Commons Attribution 4.0 International License.