Assessment of Fluid Forces on Flooded Bridge Superstructures Using the SPH Method

T. A. Do, T. H. Nguyen

Abstract


This paper presents a numerical simulation utilizing the Smoothed Particle Hydrodynamics (SPH) methodology to analyze the impact of water flow on bridge superstructures. The focus of the study is the Canh Nang bridge, which experienced significant damage during a severe flood in Vietnam. The SPH model accounts for flow morphology, velocity fields, and flow pressure around the submerged superstructure, providing insights into areas of high flow pressure and the water resistance coefficient (Cd). By employing modified dynamic boundaries for solid surfaces and the inflow-outflow conditions, the model effectively addresses fluid-bed and fluid-structure interactions. The results highlight elevated flow pressure on specific surface locations of the superstructure, while lower pressures are observed on the bottom surfaces and between adjacent girders. The calculated Cd values are evaluated against those from various bridge design standards, including the Indian code, Eurocode, AS5100, and TCVN 11823. This comparison reveals discrepancies and suggests the potential for refining current design practices. Future research directions include the experimental validation of SPH model results and the exploration of how structural parameters influence superstructure response during flood events.

 

Doi: 10.28991/CEJ-2024-010-12-019

Full Text: PDF


Keywords


SPH; Bridge Superstructure; Flow-Structure Interaction; Flow Impact Force; Canh Nang Bridge.

References


Cao, M. X., Liu, Z., & Meng, J. (2009). Statistical analysis and reflections on bridge deficiencies and disasters in the United States. Highway, 7(7), 162-167.

Storey, C., & Delatte, N. (2003). Lessons from the Collapse of the Schoharie Creek Bridge. Forensic Engineering (2003), 158–167. doi:10.1061/40692(241)18.

Sousa, J. J., & Bastos, L. (2013). Multi-temporal SAR interferometry reveals acceleration of bridge sinking before collapse. Natural Hazards and Earth System Science, 13(3), 659–667. doi:10.5194/nhess-13-659-2013.

Saatcioglu, M., Ghobarah, A., & Nistor, I. (2006). Performance of structures in Thailand during the December 2004 Great Sumatra earthquake and Indian Ocean tsunami. Earthquake Spectra, 22(SUPPL. 3), 295–319. doi:10.1193/1.2209175.

Kawashima, K., Kosa, K., Takahashi, Y., Akiyama, M., Nishioka, T., Watanabe, G., ... & Matsuzaki, H. (2011). Damages of bridges during 2011 Great East Japan earthquake. Proceedings of 43rd Joint Meeting, US-Japan Panel on Wind and Seismic Effects, 29-30 August, Tsukuba Science City, Japan.

Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225. doi:10.1016/0021-9991(81)90145-5.

Xiao, H., Huang, W., Tao, J., & Liu, C. (2013). Numerical modeling of wave-current forces acting on horizontal cylinder of marine structures by VOF method. Ocean Engineering, 67, 58–67. doi:10.1016/j.oceaneng.2013.01.027.

Nan, X., Liu, X., Chen, L., Yan, Q., & Li, J. (2023). Study of the bridge damage during flooding based on a coupled VOF-FSI method. Journal of Engineering Research (Kuwait), 11(3), 51–61. doi:10.1016/j.jer.2023.100081.

Song, Y., Jia, J., Liu, H., Chen, F., & Fang, Q. (2023). Numerical Study on Tsunami Force on Coastal Bridge Decks with Superelevation. Journal of Marine Science and Engineering, 11(4), 824. doi:10.3390/jmse11040824.

Tang, C., Zhao, Q., Wang, L., Chen, Z., & Fang, Q. (2024). Numerical Investigation of Wave Force on Coastal Bridge Decks Close to a Sloping Seabed. Journal of Marine Science and Engineering, 12(6), 984. doi:10.3390/jmse12060984.

Han, W., Xu, X., Wang, J., Xiao, L., Zhou, K., & Guo, X. (2023). Safety Assessment of Coastal Bridge Superstructures with Box Girders under Potential Landslide Tsunamis. Journal of Marine Science and Engineering, 11(5). doi:10.3390/jmse11051062.

Wang, S., Liu, S., Xiang, C., Li, M., Yang, Z., & Huang, B. (2023). Prediction of Wave Forces on the Box-Girder Superstructure of the Offshore Bridge with the Influence of Floating Breakwater. Journal of Marine Science and Engineering, 11(7), 1326. doi:10.3390/jmse11071326.

Kisi, O., Ardiçlioğlu, M., Hadi, A. M. W., Kuriqi, A., & Kulls, C. (2023). Estimation of Mean Velocity Upstream and Downstream of a Bridge Model Using Metaheuristic Regression Methods. Water Resources Management, 37(14), 5559–5580. doi:10.1007/s11269-023-03618-6.

Kosa, K., Akiyosi, S., Nii, S., & Kimura, K. (2017). Experimental study to evaluate the horizontal force to the bridge by tsunami, Kozo Kogaku Ronbunshu. Journal of Structural Engineering, 57.

Liang, T., Ohmachi, T., Inoue, S., & Lukkunaprasit, P. (2011). Experimental and Numerical Modeling of Tsunami Force on Bridge Decks. In Tsunami - A Growing Disaster (pp. 105–130). doi:10.5772/23622.

Zhang, G., Usui, T., & Hoshikuma, J. (2010). Experimental Study on a Countermeasure for Reducing Tsunami Wave Force Acting on Superstructure of Bridges. Journal of Japan Society of Civil Engineers, Ser. A1 (Structural Engineering & Earthquake Engineering (SE/EE)), 66(1), 425–433. doi:10.2208/jscejseee.66.425.

Gingold, R. A., & Monaghan, J. J. (1977). Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181(3), 375–389. doi:10.1093/mnras/181.3.375.

Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. The Astronomical Journal, 82, 1013. doi:10.1086/112164.

Nguyen, Q. B. (2009). Reliability of industrial installations under impact of structural fragments - Domino effect. Ph.D. Thesis, Paris, France. (In French).

Xu, F., Zhao, Y., Yan, R., & Furukawa, T. (2013). Multidimensional discontinuous SPH method and its application to metal penetration analysis. International Journal for Numerical Methods in Engineering, 93(11), 1125–1146. doi:10.1002/nme.4414.

Shintate, K., & Sekine, H. (2004). Numerical simulation of hypervelocity impacts of a projectile on laminated composite plate targets by means of improved SPH method. Composites Part A: Applied Science and Manufacturing, 35(6), 683–692. doi:10.1016/j.compositesa.2004.02.011.

Zhu, M., Elkhetali, I., & Scott, M. H. (2018). Validation of OpenSees for Tsunami Loading on Bridge Superstructures. Journal of Bridge Engineering, 23(4), 4018015. doi:10.1061/(asce)be.1943-5592.0001221.

Do, T. A., Nguyen, T. H., Nguyen, H. M., Tran, N. D., & Nguyen, L. N. (2020). Evaluation of dynamic impact of flow with bridge pier using smoothed particle hydrodynamics method. Progress in Computational Fluid Dynamics, 20(6), 332–348. doi:10.1504/PCFD.2020.111401.

Nguyen-Ngoc, L., Do, T. A., Nguyen, T. H., Nguyen, T. D., Tran, A. T., Ho, N. X., & Nguyen, D. H. (2023). Smoothed Particle Hydrodynamics Simulation and Evaluation of Water Flow Pressure on Bridge Piers. Journal of Applied Science and Engineering, 26(10), 1471–1479. doi:10.6180/jase.202310_26(10).0012.

Nguyen, H. T., Cosson, B., Lacrampe, M. F., & Do, T. A. (2018). Numerical simulation of reactive polymer flow during rotational molding using smoothed particle hydrodynamics method and experimental verification. International Journal of Material Forming, 11(4), 583–592. doi:10.1007/s12289-017-1367-2.

Nguyen, H. T., Do, T. A., & Cosson, B. (2019). Numerical simulation of submerged flow bridge scour under dam-break flow using multi-phase SPH method. Mathematical Biosciences and Engineering, 16(5), 5395–5418. doi:10.3934/mbe.2019269.

Shao, S., & Lo, E. Y. M. (2003). Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Advances in Water Resources, 26(7), 787–800. doi:10.1016/S0309-1708(03)00030-7.

Nakao, H., Zhang, G., Sumimura, T., & Hoshikuma, J. I. (2013). Numerical assessment of tsunami-induced effect on bridge behavior. Proceedings of the 29th US-Japan Bridge Engineering Workshop, 11-13, November, Tsukuba, Japan.

Wong, H. K. (2015). Three-dimensional effects of tsunami impact on bridges. Master Thesis, University of Washington, Seattle, United States.

Kerenyi, K., Sofu, T., & Guo, J. (2009). Hydrodynamic forces on inundated bridge decks. FHWA-HRT-09-028, United States Department of Transportation, McLean, United States.

Wei, Z., Dalrymple, R. A., Hérault, A., Bilotta, G., Rustico, E., & Yeh, H. (2015). SPH modeling of dynamic impact of tsunami bore on bridge piers. Coastal Engineering, 104, 26–42. doi:10.1016/j.coastaleng.2015.06.008.

Pringgana, G., Cunningham, L. S., & Rogers, B. D. (2016). Modelling of tsunami-induced bore and structure interaction. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 169(3), 109–125. doi:10.1680/jencm.15.00020.

Dalrymple, R. A., & Rogers, B. D. (2006). Numerical modeling of water waves with the SPH method. Coastal Engineering, 53(2–3), 141–147. doi:10.1016/j.coastaleng.2005.10.004.

Gotoh, H., Shao, S., & Memita, T. (2004). SPH-LES model for numerical investigation of wave interaction with partially immersed breakwater. Coastal Engineering Journal, 46(1), 39–63. doi:10.1142/S0578563404000872.

Ata, R., & Soulaïmani, A. (2005). A stabilized SPH method for inviscid shallow water flows. International Journal for Numerical Methods in Fluids, 47(2), 139–159. doi:10.1002/fld.801.

Courant, R., Friedrichs, K., & Lewy, H. (1928). On the partial difference equations of mathematical physics. Mathematische Annalen, 100(1), 32–74. doi:10.1007/BF01448839.

AS 5100.1-2004 AP-G15.1/04. (2004). Bridge Design, Part 1: Scope and General Principles. Australian Standard, Sydney, Australia.

B. 59/94. (1994). Design of highway bridges for hydraulic action (Part 6). The Scottish Office development Department, The Welsh office, The Department of the Environment for Northern Ireland, Belfast, Northern Ireland.

TCVN11823:2017. (2017). Highway bridge design specification. Vietnam Standards, Hanoi, Vietnam. (In Vietnamese).

IRC:58-2015. (2015). Guidelines for the Design of Plain Jointed Rigid Pavements for Highway (4th Ed.). Indian Roads Congress, New Delhi, India.

Guo, J., Kerenyi, K., Pagan-Ortiz, J. E., Flora, K., Lyn, D., & Bergendahl, B. (2009). Bridge Pressure Flow Scour for Clear Water Conditions. FHWA-HRT-09-041, United States Department of Transportation, McLean, United States.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-12-019

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Tu Anh Do, Thuan Huu Nguyen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message