Evaluation of Skirt-Raft Foundation Performance Adjacent to Unsupported Excavations

Balqees A. Ahmed, Husam M. Saleh, Mina M. Jameel, Asmaa Al-Taie

Abstract


The continuous demand for urban development, along with the construction of new buildings, highways, and infrastructure, creates an increasing necessity for excavation activities. Deep excavation near existing buildings can lead to ground instability, potentially causing structural damage to nearby properties. This research aims to investigate methods for enhancing buildings stability from the initial stages of construction, focusing on protecting structures from potential future adjacent excavations. This study utilizes a skirt-raft foundation system, modeled using the finite element software PLAXIS 3D, to evaluate its effectiveness in improving stability and protection. The study analyzed the behavior of raft foundations in clay soil adjacent to excavations ranging from 1 m to 10 m and compared this with the performance of raft foundations with added skirt foundations. The comparison focused on settlement, rotation, and lateral movement of the excavations to assess potential building damage. The results showed that incorporating a skirt foundation significantly enhanced structural stability and reduced excavation-related damage. The implementation of a skirt foundation to a depth of 0.5B (where B is the foundation width) for excavations of similar depth has been shown to significantly reduce damage levels from medium or high to light while also decreasing differential settlement by 80%. It is recommended that adjacent excavation depths should not exceed 0.25B. However, if a skirt foundation is constructed at a depth of 0.5B, the excavation depth can be safely extended to 0.75B.

 

Doi: 10.28991/CEJ-2024-010-12-018

Full Text: PDF


Keywords


Excavations; Raft Foundation; Skirt Foundation; Clayey Soil; PLAXIS 3D.

References


Dmochowski, G., & Szolomicki, J. (2021). Technical and structural problems related to the interaction between a deep excavation and adjacent existing buildings. Applied Sciences (Switzerland), 11(2), 1–19. doi:10.3390/app11020481.

Dong, J., Bai, Q., Zhao, W., & Wang, B. (2023). Test Study on the Influence of Foundation Pit Excavation on the Surface Settlement of Sandy Soil Natural Foundation of Adjacent Buildings. Buildings, 13(5), 1293. doi:10.3390/buildings13051293.

Zhang, D. (2023). Influences of Deep Foundation Pit Excavation on the Stability of Adjacent Ancient Buildings. Buildings, 13(8), 4. doi:10.3390/buildings13082004.

Mangi, N., Kumar, M., Mangnejo, D. A., Karira, H., Jhatial, A. A., & Lakhair, F. R. (2019). Crack Pattern Investigation in the Structural Members of a Framed Two-Floor Building due to Excavation-Induced Ground Movement. Engineering, Technology and Applied Science Research, 9(4), 4463–4468. doi:10.48084/etasr.2923.

Schuster, M., Kung, G. T.-C., Juang, C. H., & Hashash, Y. M. A. (2009). Simplified Model for Evaluating Damage Potential of Buildings Adjacent to a Braced Excavation. Journal of Geotechnical and Geoenvironmental Engineering, 135(12), 1823–1835. doi:10.1061/(asce)gt.1943-5606.0000161.

Piciullo, L., Ritter, S., Lysdahl, A. O. K., Langford, J., & Nadim, F. (2021). Assessment of building damage due to excavation-induced displacements: The GIBV method. Tunnelling and Underground Space Technology, 108. doi:10.1016/j.tust.2020.103673.

Khalid, M. H., & Alshameri, B. (2022). Determination of safe depth and lateral distance of unsupported excavation near mat foundation in cohesive soils using Plaxis. Journal of Applied Science and Engineering, 25(2), 249–260. doi:10.6180/jase.202204_25(2).0011.

Castaldo, P., Calvello, M., & Palazzo, B. (2013). Probabilistic analysis of excavation-induced damages to existing structures. Computers and Geotechnics, 53, 17–30. doi:10.1016/j.compgeo.2013.04.008.

Zhao, J., Ritter, S., & DeJong, M. J. (2022). Early-stage assessment of structural damage caused by braced excavations: Uncertainty quantification and a probabilistic analysis approach. Tunnelling and Underground Space Technology, 125. doi:10.1016/j.tust.2022.104499.

Zhang, X., & Zhan, Z. (2021). Evaluation of Risk of Building Damage due to Deep Excavations via Numerical Modelling. Advances in Civil Engineering, 2021. doi:10.1155/2021/6646094.

Bjerrum, L. (1963). Discussion on compressibility of soils. Proceedings of the European conference on soil mechanics and foundation engineering, 24-27 September, 1963, Budapest, Hungary.

Yang, Y., Li, X., & Chen, Y. (2022). The Influence of Different Excavation Methods on Deep Foundation Pit and Surrounding Environment. Lecture Notes in Civil Engineering, 213 LNCE, 109–129. doi:10.1007/978-981-19-1260-3_11.

Zhang, Q. (2020). Deformation analysis of deep foundation pit excavation in China under time-space effect. Geotechnical Research, 7(3), 146–152. doi:10.1680/jgere.20.00009.

Burland, J. B., & Wroth, C. P. (1975). Settlement of buildings and associated damage. Proceedings of the Conference of the British Geotechnical Society, No. CP 33/75.

Wang, Z. Yu, Gu, D. Ming, & Zhang, W. Gang. (2020). Influence of excavation schemes on slope stability: A DEM study. Journal of Mountain Science, 17(6), 1509–1522. doi:10.1007/s11629-019-5605-6.

Hu, J., & Ma, F. (2018). Failure Investigation at a Collapsed Deep Open Cut Slope Excavation in Soft Clay. Geotechnical and Geological Engineering, 36(1), 665–683. doi:10.1007/s10706-017-0337-2.

Rankin, W. J. (1988). Ground movements resulting from urban tunnelling: Predictions and effects. Geological Society Engineering Geology Special Publication, 5(5), 79–92. doi:10.1144/GSL.ENG.1988.005.01.06.

Shaaban, M. G., Kenawi, M. A., Senoon, A. A. A., & El-Naiem, M. A. A. (2023). Effects of excavation and construction sequence on behavior of existing pile groups. Innovative Infrastructure Solutions, 8(8), 223. doi:10.1007/s41062-023-01193-8.

Al-Jorany, A. N., & Al-Qaisee, G. S. (2016). Field Observation of Soil Displacements Resulting Due Unsupported Excavation and Its Effects on Proposed Adjacent Piles. Journal of Engineering, 22(5), 11–28. doi:10.31026/j.eng.2016.05.02.

Al-Soudani, W. H., & Albusoda, B. S. (2024). Experimental and numerical simulation of a ring and wings-open-ended pipe pile. Innovative Infrastructure Solutions, 9(1), 27. doi:10.1007/s41062-023-01323-2.

Miao, Y., Liu, B., Liu, C., Shu, Z., & Wu, H. (2020). Experimental Study on Stability Analysis of a Structure during Excavation beneath This Structure. Advances in Civil Engineering, 2020(1), 9268927. doi:10.1155/2020/9268927.

Wei, H. (2021). Influence of Foundation Pit Excavation and Precipitation on Settlement of Surrounding Buildings. Advances in Civil Engineering, 6638868. doi:10.1155/2021/6638868.

Wang, K., Yang, Z., Guo, J., Dang, Y., & Yan, Y. (2023). Numerical Analysis of the Influence of Deep Excavation on Nearby Pile Foundation Building. Buildings, 13(11), 2842. doi:10.3390/buildings13112842.

Soomro, M. A., Memon, K. F., Soomro, M. A., Memon, A., & Keerio, M. A. (2018). Single Pile Settlement and Load Transfer Mechanism due to Excavation in Silty Clay. Engineering, Technology & Applied Science Research, 8(1), 2485–2492. doi:10.48084/etasr.1666.

Soomro, M. A., Brohi, A. S., Soomro, M. A., Bangwar, D. K., & Bhatti, S. A. (2018). 3D Numerical Modeling of Pile Group Responses to Excavation-Induced Stress Release in Silty Clay. Engineering, Technology & Applied Science Research, 8(1), 2577–2584. doi:10.48084/etasr.1748.

Mangnejo, D. A., Soomro, M. A., Mangi, N., Halepoto, I. A., & Dahri, I. A. (2018). A Parametric Study of Effect on Single Pile Integrity Due to an Adjacent Excavation Induced Stress Release in Soft Clay. Engineering, Technology & Applied Science Research, 8(4), 3189–3193. doi:10.48084/etasr.2105.

Yu, Z. T., Wang, H. Y., Wang, W., Ling, D. S., Zhang, X. D., Wang, C., & Qu, Y. H. (2021). Experimental and Numerical Investigation on the Effects of Foundation Pit Excavation on Adjacent Tunnels in Soft Soil. Mathematical Problems in Engineering, 5587857. doi:10.1155/2021/5587857.

Liu, F., Zhang, X., Xiang, M., Lyu, J., Feng, R., & LIU, S. (2024). Experimental study on stress and deformation characteristics of foundation pit considering excavation width using 3D printing technology. Frontiers in Earth Science, 12. doi:10.3389/feart.2024.1373140.

Xie, L., & Liu, S. (2022). Analysis of the influence of super large area and super deep foundation pit excavation construction on surrounding subways. Journal of Mechatronics and Artificial Intelligence in Engineering, 3(2), 65–75. doi:10.21595/jmai.2022.22776.

Uba Uge, B., & Guo, Y. (2020). Deep Foundation Pit Excavations Adjacent to Disconnected Piled Rafts: A Review on Risk Control Practice. Open Journal of Civil Engineering, 10(03), 270–300. doi:10.4236/ojce.2020.103023.

Al-Qaisee, G. S., Ahmed, M. D., & Ahmed, B. A. (2020). Performance of piled raft foundations under the effect of dewatering nearby an open pit. IOP Conference Series: Materials Science and Engineering, 737(1), 12081. doi:10.1088/1757-899X/737/1/012081.

Liang, Y. Y., Liu, N. W., Yu, F., Gong, X. N., & Chen, Y. T. (2019). Prediction of response of existing building piles to adjacent deep excavation in soft clay. Advances in Civil Engineering, 8914708. doi:10.1155/2019/8914708.

Niu, Y., Wang, Q., & Ma, F. (2023). Study on the Influence of Foundation Pit Excavation on the Deformation of Adjacent Subway Tunnel in the Affected Area of Fault Zones. Sustainability (Switzerland), 15(12), 9462. doi:10.3390/su15129462.

Amarasinghe, M. P., De Silva, L. I. N., & Gallage, C. (2018). The effect of lateral confinement on the settlement characteristics of shallow foundations on sand. GEOMATE Journal, 15(51), 258-265.

Mohammadizadeh, M., Nadi, B., Hajiannia, A., & Mahmoudi, E. (2023). The undrained vertical bearing capacity of skirted foundations located on slopes using finite element limit analysis. Innovative Infrastructure Solutions, 8(4), 121. doi:10.1007/s41062-023-01070-4.

Patel, S. K., & Singh, B. (2019). A parametric study on the vertical pullout capacity of suction caisson foundation in cohesive soil. Innovative Infrastructure Solutions, 4, 1-11. doi:10.1007/s41062-018-0188-6.

Fattah, M. Y., Shlash, K. T., & Mohammed, H. A. (2014). Bearing Capacity of Rectangular Footing on Sandy Soil Bounded by a Wall. Arabian Journal for Science and Engineering, 39(11), 7621–7633. doi:10.1007/s13369-014-1353-7.

Abd-Alhameed, H. J., & Al-Busoda, B. S. (2023). Experimental Study on the Behavior of Square-Skirted Foundation Rested on Gypseous soil Under Inclined Load. Journal of Engineering, 29(3), 27–39. doi:10.31026/j.eng.2023.03.03.

Ahmed, B. A., Saleh, H. M., Jameel, M. M., & Al-Taie, A. (2024). Increasing the Performance of Ring Foundation to Lateral Loads by using a Skirt Foundation. Engineering, Technology & Applied Science Research, 14(6), 17629–17635. doi:10.48084/etasr.8617.

Nazeer, S., & Dutta, R. K. (2021). Bearing capacity of embedded and skirted e-shaped footing on layered sand. Journal of Achievements in Materials and Manufacturing Engineering, 108(1), 5–23. doi:10.5604/01.3001.0015.4795.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-12-018

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Balqees Abdulwahid Ahmed

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message