The Effects of Seismic Behavior on High Ground Stress Soft Rock Tunnel: A Review
Abstract
Doi: 10.28991/CEJ-2024-010-09-020
Full Text: PDF
Keywords
References
Chen, X., Shen, J., Bao, X., Wu, X., Tang, W., & Cui, H. (2023). A review of seismic resilience of shield tunnels. Tunnelling and Underground Space Technology, 136, 105075. doi:10.1016/j.tust.2023.105075.
Jaramillo, C. A. (2017). Impact of seismic design on tunnels in rock – Case histories. Underground Space (China), 2(2), 106–114. doi:10.1016/j.undsp.2017.03.004.
Wang, X., Lai, J., Garnes, R. S., & Luo, Y. (2019). Support System for Tunnelling in Squeezing Ground of Qingling-Daba Mountainous Area: A Case Study from Soft Rock Tunnels. Advances in Civil Engineering, 2019, 1–17. doi:10.1155/2019/8682535.
Asheghabadi, M. S., & Matinmanesh, H. (2011). Finite element seismic analysis of cylindrical tunnel in sandy soils with consideration of soil-tunnel interaction. Procedia Engineering, 14, 3162–3169. doi:10.1016/j.proeng.2011.07.399.
Sanín Zuluaga, M., & Montoya-Noguera, S. (2024). Deformation failure mechanism and characterization for black shale tunnels: A case study. Engineering Failure Analysis, 158, 108033. doi:10.1016/j.engfailanal.2024.108033.
Aydan, Ö. (2019). Rock mechanics and rock engineering: Volume 2: Applications of Rock Mechanics-Rock Engineering. CRC Press, Florida, United States.
Adachi, T., Tateyama, K., & Kimura, M. (2017). Modern tunneling science and technology. Modern Tunneling Science and Technology, Routledge, London, United Kingdom. doi:10.1201/9780203746653.
Zhu, H., Yan, J., & Liang, W. (2019). Challenges and Development Prospects of Ultra-Long and Ultra-Deep Mountain Tunnels. Engineering, 5(3), 384–392. doi:10.1016/j.eng.2019.04.009.
Ding, F. (2018). Research on fracture mechanism of high ground stress fracture rock tunnel and auxiliary construction measures. AIP Conference Proceedings, 2036, 030058. doi:10.1063/1.5075711.
Al-Bazali, T., Zhang, J., Chenevert, M. E., & Sharma, M. M. (2008). Maintaining the stability of deviated and horizontal wells: Effects of mechanical, chemical and thermal phenomena on well designs. Geomechanics and Geoengineering, 3(3), 167–178. doi:10.1080/17486020802050836.
Ullah, S. (2016). A Report on Site Effects Studies in Kyrgyzstan: recommendation for a new A Report on Site Effects Studies in Kyrgyzstan. Scientific Technical Report, 16(January), 1-22. doi:10.2312/GFZ.b103-1602en.
Daniel, B., Xavier, R., Christine, D., & Hart, R. (2003). FLAC and Numerical Modeling in Geomechanics 2003. FLAC and Numerical Modeling in Geomechanics 2003. Balkema Publishers, Lisse, The Netherlands. doi:10.1201/9781439833490.
Nadir, W., Dhahir, M. K., & Naser, F. H. (2018). A compression field-based model to assess the shear strength of concrete slender beams without web reinforcement. Case Studies in Construction Materials, 9. doi:10.1016/j.cscm.2018.e00210.
Zhao, J., Vincent, L., Jean-Paul, D., & Jean-Francois, M. (2010). Rock Mechanics in Civil and Environmental Engineering. Rock Mechanics in Civil and Environmental Engineering. CRC Press, Florida, United States. doi:10.1201/b10550.
Sagaseta, C. (1992). Mechanics of jointed and faulted rock. Rock Mechanics and Rock Engineering, 25(1), 63-63. doi:10.1007/BF01041876.
Thompson, A. G., & Finn, D. J. (2018). Rock Support and Reinforcement Practice in Mining, 1999 Villaescusa, Windsor & Thompson 905809 (eds). Rock Support and Reinforcement Practice in Mining, 91.
Sastry, V. R., Chandar, K. R., Madhumitha, S., & Sruthy, T. G. (2015). Tunnel Stability under Different Conditions: Analysis by Numerical and Empirical Modeling. International Journal of Geological and Geotechnical Engineering, 1(1), 52–64.
Su, G., Chen, Z., Ju, J. W., Zhao, B., Yan, S., & Yan, Z. (2019). Experimental study of the dynamically induced rockburst of a rock wall with double free faces. International Journal of Damage Mechanics, 28(4), 611–637. doi:10.1177/1056789518779070.
Tan, Q. H., Gardner, L., Han, L. H., & Song, T. Y. (2020). Performance of concrete-filled stainless-steel tubular (CFSST) columns after exposure to fire. Thin-Walled Structures, 149, 106629. doi:10.1016/j.tws.2020.106629.
Suchowerska, A. M., Carter, J. P., & Merifield, R. S. (2014). Horizontal stress under supercritical longwall panels. International Journal of Rock Mechanics and Mining Sciences, 70, 240–251. doi:10.1016/j.ijrmms.2014.03.009.
Fahimifar, A., Tehrani, F. M., Hedayat, A., & Vakilzadeh, A. (2010). Analytical solution for the excavation of circular tunnels in a visco-elastic Burger’s material under hydrostatic stress field. Tunnelling and Underground Space Technology, 25(4), 297–304. doi:10.1016/j.tust.2010.01.002.
Abdellah, W. R., Ali, M. A., & Yang, H. S. (2018). Studying the effect of some parameters on the stability of shallow tunnels. Journal of Sustainable Mining, 17(1), 20–33. doi:10.1016/j.jsm.2018.02.001.
Anato, N. J., Assogba, O. C., Tang, A., Diakité, Y., & Cho Mya, D. (2022). Numerical and statistical investigation of the performance of closed-cell aluminium foam as a seismic isolation layer for tunnel linings. European Journal of Environmental and Civil Engineering, 26(14), 7282–7306. doi:10.1080/19648189.2021.1986138.
Fang, Z., Zhu, Z., & Chen, X. (2021). Research on construction method and deformation control technology of high ground stress interbedded soft rock tunnel. Journal of Intelligent and Fuzzy Systems, 40(4), 6175–6183. doi:10.3233/JIFS-189455.
Do, N. A., Pham, V. V., & DIAS, D. (2023). A new pseudo-static loading scheme for the hyperstatic reaction method - case of sub-rectangular tunnels under seismic conditions. Sustainable and Resilient Infrastructure, 8(3), 340–356. doi:10.1080/23789689.2023.2200521.
Hoek, E., & Brown, E. T. (1980). Empirical strength criterion for rock masses. Journal of the Geotechnical Engineering Division, ASCE, 106(GT9, Proc. Paper, 15715), 1013–1035. doi:10.1061/ajgeb6.0001029.
Wang, X., & Yanbo, H. Comparison of Large Deformation Control Technologies for Soft Rock Tunnel with High Ground Stress between China and Foreign Countries: A Case Study of Muzhailing Tunnel on Lanzhou Chongqing Railway in China and Saint Gotthard Base Tunnel in Switzerland. Tunnel Construction, 38(10), 1621. doi:10.3973/j.issn.2096-4498.2018.10.004.
Karakas, A. (2008). Practical Rock Engineering. Environmental and Engineering Geoscience, 14(1), 55–57. doi:10.2113/gseegeosci.14.1.55.
Fan, H., Wang, L., Wang, S., & Jiang, C. (2021). A New Unified Solution for Deep Tunnels in Water-Rich Areas considering Pore Water Pressure. Geofluids, 2021, 1–12. doi:10.1155/2021/6696757.
Sharafat, A., Tanoli, W. A., Raptis, G., & Seo, J. W. (2019). Controlled blasting in underground construction: A case study of a tunnel plug demolition in the Neelum Jhelum hydroelectric project. Tunnelling and Underground Space Technology, 93. doi:10.1016/j.tust.2019.103098.
Fu, H., Guan, X., Chen, C., Wu, J., Nie, Q., Yang, N., Liu, Y., & Liu, J. (2023). Formation Mechanism and Control Technology of an Excavation Damage Zone in Tunnel-Surrounding Rock. Applied Sciences (Switzerland), 13(2), 1006. doi:10.3390/app13021006.
Wang, W., Yan, C., Guo, J., Zhao, H., Li, G., Yao, W., & Ren, T. (2024). Improving Tunnel Boring Machine Tunneling Performance by Investigating the Particle Size Distribution of Rock Chips and Cutter Consumption. Buildings, 14(4), 1124–24. doi:10.3390/buildings14041124.
Huang, X., Liu, Q., Liu, H., Zhang, P., Pan, S., Zhang, X., & Fang, J. (2018). Development and in-situ application of a real-time monitoring system for the interaction between TBM and surrounding rock. Tunnelling and Underground Space Technology, 81, 187–208. doi:10.1016/j.tust.2018.07.018.
Vitali, O. P. M., Celestino, T. B., & Bobet, A. (2022). Construction strategies for a NATM tunnel in São Paulo, Brazil, in residual soil. Underground Space (China), 7(1), 1–18. doi:10.1016/j.undsp.2021.04.002.
Aghajari, M., Dehghan, A. N., & Lajevardi, S. H. (2024). Optimizing Sequential Excavation Method for Ground Settlement Control in Tehran Subway Tunnel Line 6. Geotechnical and Geological Engineering, 42(5), 3595–3614. doi:10.1007/s10706-024-02747-y.
Jiang, T., Wu, Z., Shan, S., Zhong, Q., Lu, Q., & Yang, P. (2023). DEM-based study of hydraulic fracturing mechanism under high internal water pressure. Frontiers in Environmental Science, 11. doi:10.3389/fenvs.2023.1251664.
Oh, T. M., Joo, G. W., Hong, C. H., Cho, G. C., & Ji, I. T. (2013). Tunnel excavation using waterjet pre-cutting technology. Underground-The Way to the Future: Proceedings of the World Tunnel Congress, WTC 2013, 1567–1570. doi:10.1201/b14769-215.
Zhang, L., Qi, Q., Chen, X., Zuo, S., Deng, K., Bi, R., & Chai, J. (2022). Impact of Stimulated Fractures on Tree-Type Borehole Methane Drainage from Low-Permeability Coal Reservoirs. Minerals, 12(8), 940. doi:10.3390/min12080940.
Zeng, G. S., Wang, H. N., Jiang, M. J., & Luo, L. S. (2020). Analytical solution of displacement and stress induced by the sequential excavation of noncircular tunnels in viscoelastic rock. International Journal of Rock Mechanics and Mining Sciences, 134, 104429. doi:10.1016/j.ijrmms.2020.104429.
Ayvaz, S., & Alpay, K. (2021). Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time. Expert Systems with Applications, 173, 114598. doi:10.1016/j.eswa.2021.114598.
Nguyen, D. D., Park, D., Shamsher, S., Nguyen, V. Q., & Lee, T. H. (2019). Seismic vulnerability assessment of rectangular cut-and-cover subway tunnels. Tunnelling and Underground Space Technology, 86, 247–261. doi:10.1016/j.tust.2019.01.021.
Park, B.-H., Minnu, T., Tae-Hyung, L., Kee-Dong, K., & Nam-Hyoung, L. (2010). The Preliminary Seismic Performance Evaluation of Cut-And-Cover Tunnels through the Case Studies. Proceedings of the KAIS Fall Conference, 653 – 656.
Ghorbani, M., Shahriar, K., Sharifzadeh, M., & Masoudi, R. (2020). A critical review on the developments of rock support systems in high stress ground conditions. International Journal of Mining Science and Technology, 30(5), 555–572. doi:10.1016/j.ijmst.2020.06.002.
Shimamoto, K., & Yashiro, K. (2021). New rockbolting methods for reinforcing tunnels against deformation. International Journal of Rock Mechanics and Mining Sciences, 147. doi:10.1016/j.ijrmms.2021.104898.
Patnaik, A., & Adhikari, S. (2012). Potential Applications of Steel Fiber Reinforced Concrete to Improve Seismic Response of Frame Structures. NED University Journal of Research, May, 113–128.
Zhang, J., Dai, Y., Xu, J., Feng, J., & Ma, K. (2022). The Influence of the Different Cementitious Material on Self-Healing of Microcracks in Shotcrete. Advances in Materials Science and Engineering, 2022, 1 – 13. doi:10.1155/2022/3031048.
Ahmad, W., Alabduljabbar, H., & Deifalla, A. F. (2023). An overview of the research trends on fiber-reinforced shotcrete for construction applications. Reviews on Advanced Materials Science, 62(1), 20230144. doi:10.1515/RAMS-2023-0144.
Sosa, E. M., Thompson, G. J., Holter, G. M., & Fortune, J. M. (2020). Large-scale inflatable structures for tunnel protection: a review of the Resilient Tunnel Plug project. Journal of Infrastructure Preservation and Resilience, 1(1), 1–28. doi:10.1186/s43065-020-00011-0.
Paul, S., Murugan, K., Samanthula, R., Basavaraj, A. S., Stephen, S. J., Gettu, R., & Zerbino, R. L. (2023). Development of Structural Forms Using Textile Reinforced Concrete. Indian Concrete Journal, 97(8), 43–54.
Kumar, M., Whittaker, A. S., & Constantinou, M. C. (2014). An advanced numerical model of elastomeric seismic isolation bearings. Earthquake Engineering and Structural Dynamics, 43(13), 1955–1974. doi:10.1002/eqe.2431.
Petraroia, D. N., Plückelmann, S., Mark, P., & Breitenbücher, R. (2024). Tunnel lining segments with enhanced bearing capacity using hybrid concrete concepts. Tunnelling and Underground Space Technology, 143, 105484. doi:10.1016/j.tust.2023.105484.
Pandit, B., & Sivakumar Babu, G. L. (2021). Probabilistic stability assessment of tunnel-support system considering spatial variability in weak rock mass. Computers and Geotechnics, 137. doi:10.1016/j.compgeo.2021.104242.
Wen, H., Wu, J., Zhang, C., Zhou, X., Liao, M., & Xu, J. (2023). Hybrid optimized RF model of seismic resilience of buildings in mountainous region based on hyperparameter tuning and SMOTE. Journal of Building Engineering, 71, 106488. doi:10.1016/j.jobe.2023.106488.
Krauze, K., Bołoz, Ł., Mucha, K., & Wydro, T. (2021). The mechanized supporting system in tunnelling operations. Tunnelling and Underground Space Technology, 113, 103929. doi:10.1016/j.tust.2021.103929.
Wu, C., Lu, D., El Naggar, M. H., Ma, C., Li, Q., & Du, X. (2022). Upgrading seismic performance of underground frame structures based on potential failure modes. Soil Dynamics and Earthquake Engineering, 153, 107116. doi:10.1016/j.soildyn.2021.107116.
Hashash, Y. M. A., Hook, J. J., Schmidt, B., & I-Chiang Yao, J. (2001). Seismic design and analysis of underground structures. Tunnelling and Underground Space Technology, 16(4), 247–293. doi:10.1016/S0886-7798(01)00051-7.
Vipin, K. S., Anbazhagan, P., & Sitharam, T. G. (2009). Estimation of peak ground acceleration and spectral acceleration for South India with local site effects: Probabilistic approach. Natural Hazards and Earth System Science, 9(3), 865–878. doi:10.5194/nhess-9-865-2009.
Daniele, P., Giulia, V., & Tarcisio, C. (2020). Tunnels and Underground Cities: Engineering and Innovation meet Archaeology, Architecture and Art. Tunnels and Underground Cities: Engineering and Innovation Meet Archaeology, Architecture and Art, 3. doi:10.4324/9781003031857.
Intekhab, M. S., Das, S., Jajnery, M. A., Akhtar, S., Sahoo, D., & Saha, P. (2023). Analysis Methods of Irregular High-Rise Buildings Subjected to Seismic Loads. Journal of Vibration Engineering and Technologies, 11(3), 1359–1382. doi:10.1007/s42417-022-00636-3.
Hung, C. J., Wisniewski, J., Monsees, J., & Munfah, N. (2009). Technical manual for design and construction of road tunnels-civil elements (No. FHWA-NHI-10-034). National Highway Institute (US), Virginia, United States.
Baker, J., Bradley, B., & Stafford, P. (2021). Seismic Hazard and Risk Analysis. Cambridge University Press, London, United Kingdom. doi:10.1017/9781108425056.
Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5), 1583–1606. doi:10.1785/bssa0580051583.
McGuire, R. K. (2008). Probabilistic seismic hazard analysis: Early history. Earthquake Engineering and Structural Dynamics, 37(3), 329–338. doi:10.1002/eqe.765.
Tosun, H., Zorluer, I., Orhan, A., Seyrek, E., Savaş, H., & Türköz, M. (2007). Seismic hazard and total risk analyses for large dams in Euphrates basin, Turkey. Engineering Geology, 89(1–2), 155–170. doi:10.1016/j.enggeo.2006.10.003.
Sitharam, T. G., James, N., & Kolathayar, S. (2018). Comprehensive seismic zonation schemes for regions at different scales. Springer Science and Business, Cham, Germany. doi:10.1007/978-3-319-89659-5.
Yu, H., Yuan, Y., & Bobet, A. (2017). Seismic analysis of long tunnels: A review of simplified and unified methods. Underground Space (China), 2(2), 73–87. doi:10.1016/j.undsp.2017.05.003.
Yu, H., & Chen, G. (2021). Pseudo-static simplified analytical solution for seismic response of deep tunnels with arbitrary cross-section shapes. Computers and Geotechnics, 137, 104306–6. doi:10.1016/j.compgeo.2021.104306.
Wang, J. N., & Munfakh, G. A. (2001). Seismic design of tunnels. Advances in Earthquake Engineering, 9, 589–598. doi:10.2495/eres010551.
Chen, G., Yu, H., & Bobet, A. (2022). Analytical Solution for Seismic Response of Deep Tunnels with Arbitrary Cross-Section Shape in Saturated Orthotropic Rock. Rock Mechanics and Rock Engineering, 55(10), 5863–5878. doi:10.1007/s00603-022-02935-3.
Boldini, D., Amorosi, A., Palmisano, F., & Boldini Angelo Amorosi Fabrizio Palmisano, D. (2010). Analysis of Tunnel Behaviour Under Seismic Loads by Means of Simple and Advanced Numerical Approaches. International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Paper No. 5.80a.
Tsinidis, G. (2018). Response of urban single and twin circular tunnels subjected to transversal ground seismic shaking. Tunnelling and Underground Space Technology, 76, 177–193. doi:10.1016/j.tust.2018.03.016.
Zheng, M. (2013). Modal pushover analysis for high-rise buildings. Doctoral dissertation, Massachusetts Institute of Technology, Massachusetts, United States.
Yang, F., Zhang, Y., Zheng, T., & Li, B. (2016). Application of Pushover Analysis in Bridge Piers. 2016 International Forum on Energy, Environment and Sustainable Development (IFEESD 2016), 218 – 223. doi:10.2991/ifeesd-16.2016.38.
Lagomarsino, S., Penna, A., Galasco, A., & Cattari, S. (2013). TREMURI program: An equivalent frame model for the nonlinear seismic analysis of masonry buildings. Engineering Structures, 56, 1787–1799. doi:10.1016/j.engstruct.2013.08.002.
Panandikar Hede, N., & Narayan, K. S. B. (2015). Sensitivity of Pushover Curve to Material and Geometric Modelling-An Analytical Investigation. Structures, 2, 91–97. doi:10.1016/j.istruc.2015.02.004.
Chen, Z., Fan, Y., & Jia, P. (2021). Influence of buried depth on seismic capacity of underground subway stations through performance-based evaluation. Structures, 32, 194–203. doi:10.1016/j.istruc.2021.03.006.
Mazloom, M. (2007). Comparing static linear and nonlinear analyses of safe rooms in a poor performance masonry building. WIT Transactions on the Built Environment, 93, 259–268. doi:10.2495/ERES070251.
Csi, C. (2016). Analysis reference manual for SAP2000, ETABS, and SAFE. Computers and Structures, Berkeley, California, United States.
Vamvatsikos, D., & Cornell, C. A. (2006). Direct estimation of the seismic demand and capacity of oscillators with multi-linear static pushovers through IDA. Earthquake Engineering and Structural Dynamics, 35(9), 1097–1117. doi:10.1002/eqe.573.
Duan, H., & Hueste, M. B. D. (2012). Seismic performance of a reinforced concrete frame building in China. Engineering Structures, 41, 77–89. doi:10.1016/j.engstruct.2012.03.030.
Liu, J., Wang, W., & Dasgupta, G. (2014). Pushover analysis of underground structures: Method and application. Science China Technological Sciences, 57(2), 423–437. doi:10.1007/s11431-013-5430-z.
Liu, J., & Liu, X. (2008). Pushover Analysis of Daikai Subway Station During the Osaka-Kobe Earthquake in 1995. Proceedings 14th World Conference on Earthquake Engineering, 1–9.
Rana, N., & Rana, S. (2015). Non-Linear Static Analysis (Pushover Analysis) A Review. International Journal of Engineering and Technical Research (IJETR), 3(7), 39–41.
Naqash, M. T., Farooq, Q. U., & Harireche, O. (2019). Seismic Evaluation of Steel Moment Resisting Frames (MRFs)—Supported by Loose Granular Soil. Open Journal of Earthquake Research, 08(02), 37–51. doi:10.4236/ojer.2019.82003.
Ho, Y. B. (2009). Seismic vulnerability assessment of tall buildings with transfer storeys. Hong Kong University of Science and Technology, Hong Kong.
Karakaš, N., Kalman Šipoš, T., & Hadzima-Nyarko, M. (2018). APPLICATION OF DIFFERENT SEISMIC ANALYSES TO RC STRUCTURES. Elektronički Časopis Građevinskog Fakulteta Osijek, 39–51. doi:10.13167/2018.17.5.
Priyusha, G., Shreyasvi, C., & Venkataramana, K. (2023). Seismic Performance of Infilled RC Frames by Pseudo-Optimization Method. In G. C. Marano, A. V Rahul, J. Antony, G. Unni Kartha, P. E. Kavitha, & M. Preethi (Eds.), Lecture Notes in Civil Engineering, Volume. 284, 127–136. doi:10.1007/978-3-031-12011-4_11.
Ismail, A. (2014). Nonlinear static analysis of a retrofitted reinforced concrete building. HBRC Journal, 10(1), 100–107. doi:10.1016/j.hbrcj.2013.07.002.
Javanpour, M., & Zarfam, P. (2017). Application of Incremental Dynamic Analysis (IDA) Method for Studying the Dynamic Behavior of Structures During Earthquakes. Engineering, Technology & Applied Science Research, 7(1), 1338–1344. doi:10.48084/etasr.902.
Azarbakht, A., & Dolšek, M. (2011). Progressive Incremental Dynamic Analysis for First-Mode Dominated Structures. Journal of Structural Engineering, 137(3), 445–455. doi:10.1061/(asce)st.1943-541x.0000282.
Vamvatsikos, D. (2011). Performing incremental dynamic analysis in parallel. Computers and Structures, 89(1–2), 170–180. doi:10.1016/j.compstruc.2010.08.014.
Choudhury, T., & Kaushik, H. B. (2019). Treatment of uncertainties in seismic fragility assessment of RC frames with masonry infill walls. Soil Dynamics and Earthquake Engineering, 126, 105771. doi:10.1016/j.soildyn.2019.105771.
Madan, A., Das, D., & Hashmi, A. (2012). Performance based design of masonry infilled reinforced concrete frames for near-field earthquakes. WIT Transactions on the Built Environment, Vol. 125, 203–215. doi:10.2495/OP120181.
Dadkhah, M., Kamgar, R., & Heidarzadeh, H. (2022). Reducing the Cost of Calculations for Incremental Dynamic Analysis of Building Structures Using the Discrete Wavelet Transform. Journal of Earthquake Engineering, 26(7), 3317–3342. doi:10.1080/13632469.2020.1798830.
Chopra, A. K., & Goel, R. K. (2002). A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering and Structural Dynamics, 31(3), 561–582. doi:10.1002/eqe.144.
Soysal, B. F., & Arici, Y. (2014). Incremental dynamic analysis of a gravity dam. NCEE 2014 - 10th U.S. National Conference on Earthquake Engineering: Frontiers of Earthquake Engineering, 47217. doi:10.4231/D39Z90C6T.
Skrekas, P., & Giaralis, A. (2012). On the use of incremental dynamic analysis for evaluating the earthquake-resistant performance of off-shore jack-up platforms. In Proceedings of the 6th International ASRANet 2012 Conference for Integrating Structural Analysis, Risk and Reliability. Croydon, London, United Kingdom.
Alwaeli, W., Mwafy, A., Pilakoutas, K., & Guadagnini, M. (2020). Rigorous versus less-demanding fragility relations for RC high-rise buildings. Bulletin of Earthquake Engineering, 18(13), 5885–5918. doi:10.1007/s10518-020-00915-y.
Gao, Z., Zhao, M., Du, X., & Zhong, Z. (2021). A generalized response spectrum method for seismic response analysis of underground structure combined with viscous-spring artificial boundary. Soil Dynamics and Earthquake Engineering, 140(3), 106451. doi:10.1016/j.soildyn.2020.106451.
Rucha S. Banginwar, M. R. Vyawahare, P. O. M. (2012). Effect of Plans Configurations on the Seismic Behaviour of the Structure by Response Spectrum Method. International Journal of Engineering Research and Applications (IJERA), 2(3), 1439–1443.
Mohammed, J., & Hrubesova, E. (2019). Assessment of Static and Dynamic Stresses Horse-Shoe Tunnel with Connecting Gallery using Finite Element Method: (As a Case Study). Transactions of the VŠB – Technical University of Ostrava, Civil Engineering Series, 18(1), 4. doi:10.31490/tces-2018-0004.
Elmenshawy, M. R. E. (2015). Static and dynamic analysis of concrete gravity dams. Tanta University, Tanta, Egypt.
Barbagallo, F., Bosco, M., Ghersi, A., Marino, E. M., & Rossi, P. P. (2019). Seismic Assessment of Steel MRFs by Cyclic Pushover Analysis. The Open Construction and Building Technology Journal, 13(1), 12–26. doi:10.2174/18748368019130012.
Wilkinson, S. M., & Hiley, R. A. (2006). A non-linear response history model for the seismic analysis of high-rise framed buildings. Computers and Structures, 84(5–6), 318–329. doi:10.1016/j.compstruc.2005.09.021.
Ali, B. H., Saeed, B. A., & Hussein, T. A. (2020). Time History Analysis of Frame Structure Systems by State-space Representation Method. Polytechnic Journal, 10(1), 140–147. doi:10.25156/ptj.v10n1y2020.pp140-147.
Kumar, N., Prashant, K., & Sunil, S. Time History Analysis of Underground Tunnel. International Journal of Technical Innovation in Modern Engineering and Science, 4(11), 283 – 285.
Makarim, C. A., Dicky, J., & Gopta, P. A. Forensic Engineering on Causes of Tunnel Roof Cave-In Triggered by Simultaneous Blasting in Dam Project, West Java, Indonesia. 1st International Conference on Sustainable Civil Engineering Structures and Construction Materials.
Singh, M., Viladkar, M. N., & Samadhiya, N. K. (2017). Seismic Analysis of Delhi Metro Underground Tunnels. Indian Geotechnical Journal, 47(1), 67–83. doi:10.1007/s40098-016-0203-9.
Lu, Q., Chen, S., Chang, Y., & He, C. (2018). Comparison between numerical and analytical analysis on the dynamic behavior of circular tunnels. Earth Sciences Research Journal, 22(2), 119–128. doi:10.15446/esrj.v22n2.72248.
Lu, Y., & Huang, W. (2020). Numerical Simulation of Dynamic Response Law of Intersecting Metro Tunnels in Upper and Lower Strata. Geotechnical and Geological Engineering, 38(4), 3773–3785. doi:10.1007/s10706-020-01257-x.
Zhao, G., Gardoni, P., Xu, L., & Xie, L. (2023). Seismic Probabilistic Capacity Models and Fragility Estimates for the Transversal Lining Section of Circular Tunnels. Journal of Earthquake Engineering, 27(5), 1281–1301. doi:10.1080/13632469.2022.2074917.
El Omari, A., Chourak, M., Cherif, S. E., Ugena, C. N., Echebba, E. M., Rougui, M., & Chaaraoui, A. (2021). Numerical modeling of twin tunnels under seismic loading using the Finite Difference Method and Finite Element Method. Materials Today: Proceedings, 45, 7566–7570. doi:10.1016/j.matpr.2021.02.519.
Liu, Y., Wu, Z., Yang, Q., & Leng, K. (2018). Dynamic stability evaluation of underground tunnels based on deformation reinforcement theory. Advances in Engineering Software, 124, 97–108. doi:10.1016/j.advengsoft.2018.08.007.
Hassan, S., & El Shamy, U. (2019). DEM simulations of the seismic response of granular slopes. Computers and Geotechnics, 112, 230–244. doi:10.1016/j.compgeo.2019.04.019.
Zhou, Z., Gao, T., Sun, J., Gao, C., Bai, S., Jin, G., & Liu, Y. (2024). An FDM-DEM coupling method based on REV for stability analysis of tunnel surrounding rock. Tunnelling and Underground Space Technology, 152, 105917. doi:10.1016/j.tust.2024.105917.
Jain, A., & Rao, K. S. (2022). Empirical correlations for prediction of tunnel deformation in squeezing ground condition. Tunnelling and Underground Space Technology, 125, 104501. doi:10.1016/j.tust.2022.104501.
Gaudio, D., Rauseo, R., Masini, L., & Rampello, S. (2020). Semi-empirical relationships to assess the seismic performance of slopes from an updated version of the Italian seismic database. Bulletin of Earthquake Engineering, 18(14), 6245–6281. doi:10.1007/s10518-020-00937-6.
Xiao, S., Dai, T., & Li, S. (2024). Simplified Analysis Method of Seismic and Static Stability for Embankments Supported with Concrete Piles in Soft Ground. Transportation Research Record, Sage Publication. doi:10.1177/03611981241266839.
Man, J., Zhang, T., Huang, H., & Dias, D. (2024). Probabilistic analysis of tunnel face seismic stability in layered rock masses using Polynomial Chaos Kriging metamodel. Journal of Rock Mechanics and Geotechnical Engineering, 16(7), 2678–2693. doi:10.1016/j.jrmge.2023.09.020.
Lin, P., Wu, M., & Zhang, L. (2023). Probabilistic safety risk assessment in large-diameter tunnel construction using an interactive and explainable tree-based pipeline optimization method. Applied Soft Computing, 143, 110376. doi:10.1016/j.asoc.2023.110376.
Hu, X., Zhou, Z., Chen, H., & Ren, Y. (2020). Seismic fragility analysis of tunnels with different buried depths in a soft soil. Sustainability (Switzerland), 12(3), 892. doi:10.3390/su12030892.
Zhang, L., & Liu, Y. (2020). Numerical investigations on the seismic response of a subway tunnel embedded in spatially random clays. Underground Space (China), 5(1), 43–52. doi:10.1016/j.undsp.2018.10.001.
Chen, J., Yuan, Y., & Yu, H. (2019). Dynamic response of segmental lining tunnel. Geotechnical Testing Journal, 43(3), 20170419. doi:10.1520/GTJ20170419.
Tsinidis, G., Pitilakis, K., & Anagnostopoulos, C. (2016). Circular tunnels in sand: dynamic response and efficiency of seismic analysis methods at extreme lining flexibilities. Bulletin of Earthquake Engineering, 14(10), 2903–2929. doi:10.1007/s10518-016-9928-1.
Trianni, S. C. T., Lai, C. G., & Pasqualini, E. (2014). Probabilistic seismic hazard analysis at a strategic site in the Bay of Bengal. Natural Hazards, 74(3), 1683–1705. doi:10.1007/s11069-014-1268-3.
Wang, T. T., Kwok, O. L. A., & Jeng, F. S. (2021). Seismic response of tunnels revealed in two decades following the 1999 Chi-Chi earthquake (Mw 7.6) in Taiwan: A review. Engineering Geology, 287. doi:10.1016/j.enggeo.2021.106090.
Sun, M., Zhu, Y., Li, X., Zhu, Z., & He, B. (2020). Experimental study of mechanical characteristics of tunnel support system in hard cataclastic rock with high geostress. Shock and Vibration, 2020, 1 – 12. doi:10.1155/2020/8824881.
Yao, E., Sun, Q., Li, W., Yu, M., & Liu, M. (2021). Numerical study on the characteristics of the seismic response of subway shield tunnels beneath rock mountains: A case study in China. IOP Conference Series: Earth and Environmental Science, 861(5), 52067. doi:10.1088/1755-1315/861/5/052067.
Azadi, M. (2011). The seismic behavior of urban tunnels in soft saturated soils. Procedia Engineering, 14, 3069–3075. doi:10.1016/j.proeng.2011.07.386.
Fabozzi, S., Moscatelli, M., de Silva, F., Starita, L., & Bilotta, E. (2022). Probabilistic evaluation of the seismic vulnerability of rock cavities in a historical Italian site. In Geotechnical Engineering for the Preservation of Monuments and Historic Sites III - Proceedings of the 3rd International Issmge TC301 Symposium, 1184–1192. doi:10.1201/9781003308867-95.
Wu, X., & Lv, N. (2024). Seismic performance of soft rock tunnel under composite support conditions. Journal of Vibroengineering, 26(3), 643–656. doi:10.21595/jve.2023.23565.
Gong, J., Zhi, X., Fan, F., Shen, S., Qaio, D., & Zhong, J. (2021). Effects of Seismic Incident Directionality on Ground Motion Characteristics and Responses of a Single-Mass Bi-Degree-of-Freedom System. International Journal of Structural Stability and Dynamics, 21(9), 2150119. doi:10.1142/S0219455421501194.
Liu, Y., Liu, K., Li, X., & Yan, Z. (2024). Optimizing the Support System of a Shallow Buried Tunnel under Unsymmetrical Pressure. Buildings, 14(6), 1825. doi:10.3390/buildings14061825.
Abraham, O., & Dérobert, X. (2003). Non-destructive testing of fired tunnel walls: The Mont-Blanc Tunnel case study. NDT and E International, 36(6), 411–418. doi:10.1016/S0963-8695(03)00034-3.
Tsinidis, G., de Silva, F., Anastasopoulos, I., Bilotta, E., Bobet, A., Hashash, Y. M. A., He, C., Kampas, G., Knappett, J., Madabhushi, G., Nikitas, N., Pitilakis, K., Silvestri, F., Viggiani, G., & Fuentes, R. (2020). Seismic behaviour of tunnels: From experiments to analysis. Tunnelling and Underground Space Technology, 99, 103334. doi:10.1016/j.tust.2020.103334.
Zangerl, C., Evans, K. F., Eberhardt, E., & Loew, S. (2008). Consolidation settlements above deep tunnels in fractured crystalline rock: Part 1-Investigations above the Gotthard highway tunnel. International Journal of Rock Mechanics and Mining Sciences, 45(8), 1195–1210. doi:10.1016/j.ijrmms.2008.02.002.
Niu, G., He, X., Xu, H., & Dai, S. (2024). Development of Rock Classification Systems: A Comprehensive Review with Emphasis on Artificial Intelligence Techniques. Eng, 5(1), 217–245. doi:10.3390/eng5010012.
Zhang, W., Huang, W., Li, L., Liu, W., & Li, F. (2016). High resolution strain sensor for earthquake precursor observation and earthquake monitoring. Sixth European Workshop on Optical Fibre Sensors, 9916, 99160G. doi:10.1117/12.2237216.
Tan, X., Chen, W., Wu, G., Wang, L., & Yang, J. (2020). A structural health monitoring system for data analysis of segment joint opening in an underwater shield tunnel. Structural Health Monitoring, 19(4), 1032–1050. doi:10.1177/1475921719876045.
Wu, R. T., & Jahanshahi, M. R. (2020). Data fusion approaches for structural health monitoring and system identification: Past, present, and future. Structural Health Monitoring, 19(2), 552–586. doi:10.1177/1475921718798769.
Monsberger, C. M., & Lienhart, W. (2021). Distributed fiber optic shape sensing along shotcrete tunnel linings: Methodology, field applications, and monitoring results. Journal of Civil Structural Health Monitoring, 11(2), 337–350. doi:10.1007/s13349-020-00455-8.
Li, Z. (2021). Recent advances in earthquake monitoring i: Ongoing revolution of seismic instrumentation. Earthquake Science, 34(2), 177–188. doi:10.29382/eqs-2021-0011.
Ibrahim, M., & Al-Bander, B. (2024). An integrated approach for understanding global earthquake patterns and enhancing seismic risk assessment. International Journal of Information Technology (Singapore), 16(4), 2001–2014. doi:10.1007/s41870-024-01778-1.
Pu, Y., Apel, D. B., & Hall, R. (2020). Using machine learning approach for microseismic events recognition in underground excavations: Comparison of ten frequently-used models. Engineering Geology, 268, 105519. doi:10.1016/j.enggeo.2020.105519.
Tichý, T., Brož, J., Bělinová, Z., & Pirník, R. (2021). Analysis of predictive maintenance for tunnel systems. Sustainability (Switzerland), 13(7), 3977. doi:10.3390/su13073977.
Altalabani, D., Hejazi, F., Saifulnaz Bin Muhammad Rashid, R., & Nora Aznieta Abd Aziz, F. (2021). Development of new rectangular rubber isolators for a tunnel-form structure subjected to seismic excitations. Structures, 32, 1522–1542. doi:10.1016/j.istruc.2021.03.106.
Koleci, X., Osmani, R., & Ziza, R. (2024). A Review of Advanced Seismic Isolation Methods for Earthquake Resistant Structures: Role of Shear Walls in Construction. International Journal of Engineering Inventions, 13(5), 290–300. doi:10.14445/22781621/IJEI-V13I5P241.
Parghi, A., & Alam, M. S. (2018). A review on the application of sprayed-FRP composites for strengthening of concrete and masonry structures in the construction sector. Composite Structures, 187, 518–534. doi:10.1016/j.compstruct.2017.11.085.
Sun, Q., Hou, M., & Dias, D. (2024). Numerical study on the use of soft material walls to enhance seismic performance of an existing tunnel. Underground Space (China), 15, 90–112. doi:10.1016/j.undsp.2023.08.009.
Liu, L., Song, Z., & Li, X. (2024). Artificial intelligence in tunnel construction: A comprehensive review of hotspots and frontier topics. Geohazard Mechanics, 2(1), 1–12. doi:10.1016/j.ghm.2023.11.004.
Zhao, N., Wei, J., Long, Z., Yang, C., Bi, J., Wan, Z., & Dong, S. (2023). An Integrated Method for Tunnel Health Monitoring Data Analysis and Early Warning: Savitzky–Golay Smoothing and Wavelet Transform Denoising Processing. Sensors, 23(17), 7460. doi:10.3390/s23177460.
Zou, X., Zeng, J., Yan, G., Mohammed, K. J., Abbas, M., Abdullah, N., Elattar, S., Khadimallah, M. A., Toghroli, S., & Escorcia-Gutierrez, J. (2024). Advancing tunnel equipment maintenance through data-driven predictive strategies in underground infrastructure. Computers and Geotechnics, 173, 106532. doi:10.1016/j.compgeo.2024.106532.
Liu, W., Li, A., & Liu, C. (2022). Multi-objective optimization control for tunnel boring machine performance improvement under uncertainty. Automation in Construction, 139, 104310. doi:10.1016/j.autcon.2022.104310.
Pamukcu, C. (2015). Analysis and management of risks experienced in tunnel construction. Acta Montanistica Slovaca, 20(4), 271–281. doi:10.3390/ams20040271.
DOI: 10.28991/CEJ-2024-010-09-020
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Joel Sam

This work is licensed under a Creative Commons Attribution 4.0 International License.